

    
      
          
            
  
Pyro - Python Remote Objects - 5.15

[image: PYRO logo]
Manual Index


What is Pyro?

A library that enables you to build applications in which
objects can talk to each other over the network, with minimal programming effort.
You can just use normal Python method calls to call objects running on other machines.
Pyro is a pure Python library and runs on many different platforms and Python versions.

Pyro is copyright © Irmen de Jong (irmen@razorvine.net | http://www.razorvine.net).  Please read Software License and Disclaimer.

Pyro can be found on Pypi as Pyro5 [http://pypi.python.org/pypi/Pyro5/].  Source is on Github: https://github.com/irmen/Pyro5

Pyro5 is the current version of Pyro. Pyro4 [https://pyro4.readthedocs.io/] is the predecessor
that only gets important bugfixes and security fixes, but is otherwise no longer being improved.
New code should use Pyro5 if at all possible.


Contents of this manual:


	Intro and Example
	Features

	What can you use Pyro for?

	Upgrading from Pyro4

	Simple Example

	Performance





	Installing Pyro
	Compatibility

	Obtaining and installing Pyro

	Third party libraries that Pyro5 uses

	Interesting stuff that is extra in the source distribution archive and not with packaged versions





	Tutorial
	Warm-up

	Pyro concepts and tools

	Not using the Name server

	Tutorial examples





	Command line tools
	Test echo server

	Configuration check





	Clients: Calling remote objects
	Object discovery

	Calling methods

	Accessing remote attributes

	Serialization

	Proxies, connections, threads and cleaning up

	Oneway calls

	Batched calls

	Remote iterators/generators

	Pyro Callbacks

	Miscellaneous features





	Servers: hosting Pyro objects
	Creating a Pyro class and exposing its methods and properties

	Exposing classes and methods without changing existing source code

	Pyro Daemon: publishing Pyro objects

	Controlling Instance modes and Instance creation

	Autoproxying

	Server types and Concurrency model

	Serialization

	Other features





	Name Server
	Starting the Name Server

	Starting the Name Server from within your own code

	Configuration items

	Name server control tool

	Locating the Name Server and using it in your code

	The PYRONAME protocol type

	The PYROMETA protocol type

	Resolving object names

	Registering object names

	Free connections to the NS quickly

	Yellow-pages ability of the Name Server (metadata tags)

	Other methods in the Name Server API





	Security
	Network interface binding

	Running Pyro servers with different credentials/user id

	Secure communication via SSL/TLS

	Dotted names (object traversal)

	Environment variables overriding config items

	Preventing arbitrary connections





	Exceptions and remote tracebacks
	Pyro exceptions

	Remote exceptions

	Detailed traceback information





	Tips & Tricks
	Best practices

	Logging

	Multiple network interfaces

	Wire protocol version

	Pyro behind a NAT router/firewall

	‘Failed to locate the nameserver’ or ‘Connection refused’ error, what now?

	Binary data transfer / file transfer

	IPV6 support

	Pyro and Numpy

	Pyro via HTTP and JSON

	Client information on the current_context, correlation id

	Automatically freeing resources when client connection gets closed

	Message annotations

	Connection handshake

	Efficient dispatchers or gateways that don’t de/reserialize messages

	Hooking onto existing connected sockets such as from socketpair()





	Configuring Pyro
	Resetting the config to default values

	Inspecting current config

	Overview of Config Items





	Pyro5 library API
	Pyro5.api — Main API package

	Pyro5.config — Configuration items

	Pyro5.client — Client code logic

	Pyro5.core — core Pyro logic

	Pyro5.server — Server (daemon) logic

	Pyro5.errors — Exception classes

	Pyro5.nameserver — Pyro name server

	Pyro5.callcontext — Call context handling

	Pyro5.protocol — Pyro wire protocol

	Pyro5.socketutil — Socket related utilities

	Pyro5.compatibility.Pyro4 — Pyro4 backward compatibility layer

	Pyro5.utils.echoserver — Built-in echo server for testing purposes

	Pyro5.utils.httpgateway — HTTP to Pyro gateway

	Socket server API contract





	Pyrolite - client library for Java and .NET

	Change Log

	Software License and Disclaimer






Index


	Index


	Search Page





[image: PYYYRRRROOOO]
 [http://wiki.teamfortress.com/wiki/Pyro]
  
    
    

    Intro and Example
    

    

    
 
  

    
      
          
            
  
Intro and Example

[image: _images/pyro-large.png]
This chapter contains a little overview of Pyro’s features and a simple example to show how it looks like.


Features

Pyro enables you to build applications in which
objects can talk to each other over the network, with minimal programming effort.
You can just use normal Python method calls, and Pyro takes care of locating the right object on the right
computer to execute the method. It is designed to be very easy to use, and to
stay out of your way. But it also provides a set of powerful features that
enables you to build distributed applications rapidly and effortlessly.
Pyro is a pure Python library and runs on many different platforms and Python versions.

Here’s a quick overview of Pyro’s features:


	written in 100% Python so extremely portable, runs on Python 3.x and also Pypy3


	works between different system architectures and operating systems.


	able to communicate between different Python versions transparently.


	defaults to a safe serializer (serpent [https://pypi.python.org/pypi/serpent]) that supports many Python data types.


	supports different serializers (serpent, json, marshal, msgpack).


	can use IPv4, IPv6 and Unix domain sockets.


	optional secure connections via SSL/TLS (encryption, authentication and integrity), including certificate validation on both ends (2-way ssl).


	lightweight client library available for .NET and Java native code (‘Pyrolite’, provided separately).


	designed to be very easy to use and get out of your way as much as possible, but still provide a lot of flexibility when you do need it.


	name server that keeps track of your object’s actual locations so you can move them around transparently.


	yellow-pages type lookups possible, based on metadata tags on registrations in the name server.


	support for automatic reconnection to servers in case of interruptions.


	automatic proxy-ing of Pyro objects which means you can return references to remote objects just as if it were normal objects.


	one-way invocations for enhanced performance.


	batched invocations for greatly enhanced performance of many calls on the same object.


	remote iterator on-demand item streaming avoids having to create large collections upfront and transfer them as a whole.


	you can define timeouts on network communications to prevent a call blocking forever if there’s something wrong.


	remote exceptions will be raised in the caller, as if they were local. You can extract detailed remote traceback information.


	http gateway available for clients wanting to use http+json (such as browser scripts).


	stable network communication code that has worked reliably on many platforms for over a decade.


	can hook onto existing sockets created for instance with socketpair() to communicate efficiently between threads or sub-processes.


	possibility to integrate Pyro’s event loop into your own (or third party) event loop.


	three different possible instance modes for your remote objects (singleton, one per session, one per call).


	many simple examples included to show various features and techniques.


	large amount of unit tests and high test coverage.


	reliable and established: built upon more than 20 years of existing Pyro history, with ongoing support and development.






What can you use Pyro for?

Essentially, Pyro can be used to distribute and integrate various kinds of resources or responsibilities:
computational (hardware) resources (cpu, storage, printers),
informational resources (data, privileged information)
and business logic (departments, domains).

An example would be a high performance compute cluster with a large storage system attached to it.
Usually this is not accessible directly, rather, smaller systems connect to it and
feed it with jobs that need to run on the big cluster. Later, they collect the results.
Pyro could be used to expose the available resources on the cluster to other computers.
Their client software connects to the cluster and calls the Python program there to perform its
heavy duty work, and collect the results (either directly from a method call return value,
or perhaps via asynchronous callbacks).

Remote controlling resources or other programs is a nice application as well.
For instance, you could write a simple
remote controller for your media server that is running on a machine somewhere in a closet.
A simple remote control client program could be used to instruct the media server
to play music, switch playlists, etc.

Another example is the use of Pyro to implement a form of privilege separation [http://en.wikipedia.org/wiki/Privilege_separation].
There is a small component running with higher privileges, but just able to execute the few tasks (and nothing else)
that require those higher privileges. That component could expose one or more Pyro objects
that represent the privileged information or logic.
Other programs running with normal privileges can talk to those Pyro objects to
perform those specific tasks with higher privileges in a controlled manner.

Finally, Pyro can be a communication glue library to easily integrate various pars of a heterogeneous system,
consisting of many different parts and pieces. As long as you have a working (and supported) Python version
running on it, you should be able to talk to it using Pyro from any other part of the system.

Have a look at the examples directory [https://github.com/irmen/Pyro5/tree/master/examples/] in the source, perhaps one of the many example
programs in there gives even more inspiration of possibilities.



Upgrading from Pyro4

Pyro5 is the current version. It is based on most of the concepts of Pyro4, but includes some major improvements.
Using it should be very familiar to current Pyro4 users, however Pyro5 is not compatible with Pyro4 and vice versa.
To allow graceful upgrading, both versions can co-exist due to the new package name
(the same happened years ago when Pyro 3 was upgraded to Pyro4).

Pyro5 provides a basic backward-compatibility module so much of existing Pyro4 code doesn’t have to
change (apart from adding a single import statement).
This only works for code that imported Pyro4 symbols from the Pyro4 module
directly, instead of from one of Pyro4’s sub modules. So, for instance:
from Pyro4 import Proxy instead of: from Pyro4.core import Proxy.
some submodules are more or less emulated such as Pyro4.errors, Pyro4.socketutil.
So you may first have to convert your old code to use the importing scheme to
only import the Pyro4 module and not from its submodules, and then you should
insert this at the top to enable the compatibility layer:

from Pyro5.compatibility import Pyro4






What has been changed since Pyro4

If you’re familiar with Pyro4, most of the things are the same in Pyro5. These are the changes though:


	Supported on Python 3.8 or newer.


	the Pyro5 API is redesigned and this library is not compatible with Pyro4 code (although everything should be familiar):



	Pyro5 is the new package name


	restructured the submodules, renamed some submodules (naming -> nameserver,
message -> protocol, util -> serializers)


	most classes and method names are the same or at least similar but may have been shuffled around to other modules


	all toplevel functions are renamed to pep8 code style (but class method names are unchanged from Pyro4 for now)


	instead of the global package namespace you should now import Pyro5.api if you want to have one place to access the most important things


	compatibility layer: to make upgrading easier there’s a (limited) Pyro4 compatibility layer,
enable this by from Pyro5.compatibility import Pyro4 at the top of your modules. Read the docstring of this module for more details.









	Proxy moved from core to new client module


	Daemon moved from core to new server module


	no support for unsafe serializers AT ALL (pickle, dill, cloudpickle) - only safe serializers (serpent, marshal, json, msgpack)


	for now, requires msgpack to be installed as well as serpent.


	no need anymore for the ability to configure the accepted serializers in a daemon, because of the previous change


	removed some other obscure config items


	removed all from future imports and all sys.version_info checks because we’re Python 3 only


	removed Flame (utils/flameserver.py, utils/flame.py)  (although maybe the remote module access may come back in some form)


	moved test.echoserver to utils.echoserver (next to httpgateway)


	threadpool module moved into the same module as threadpool-server


	moved the multiplex and thread socketservers modules into main package


	no custom futures module anymore (you should use Python’s own concurrent.futures instead)


	async proxy removed (may come back but probably not directly integrated into the Proxy class)


	batch calls now via client.BatchProxy, no convenience functions anymore (‘batch’)


	nameserver storage option ‘dbm’ removed (only memory and sql possible now)


	naming_storage module merged into nameserver module


	no Hmac key anymore, use SSL and 2-way certs if you want true security


	metadata in proxy can no longer be switched off


	having to use the @expose decorator to expose classes or methods can no longer be switched off


	@expose and other decorators moved from core to new server module


	now prefers ipv6 over ipv4 if your os agrees


	autoproxy always enabled for now (but this feature may be removed completely though)


	values from constants module scattered to various other more relevant modules


	util traceback and excepthook functions moved to errors module


	util methods regarding object/class inspection moved to new server module


	rest of util module renamed to serializers module


	replaced deprecated usages of optparse with argparse


	moved metadata search in the name server to a separate yplookup method (instead of using list as well)


	proxy doesn’t have a thread lock anymore and no can longer be shared across different threads.
A single thread is the sole “owner” of a proxy. Another thread can use proxy._pyroClaimOwnership to take over.


	simplified serializers by moving the task of compressing data to the protocol module instead (where it belonged)


	optimized wire messages (less code, sometimes less data copying by using memoryviews, no more checksumming)


	much larger annotations possible (4Gb instead of 64Kb) so it can be (ab)used for things like efficient binary data transfer


	annotations on the protocol message are now stored as no-copy memoryviews. A memoryview doesn’t support all
methods you might expect so sometimes it may be required now to convert it to bytes or bytearray in your
own code first, before further processing. Note that this will create a copy again, so it’s best avoided.







Simple Example

This example will show you in a nutshell what it’s like to use Pyro in your programs.
A much more extensive introduction is found in the Tutorial.
Here, we’re making a simple greeting service that will return a personalized greeting message to its callers.
First let’s see the server code:

# saved as greeting-server.py
import Pyro5.api

@Pyro5.api.expose
class GreetingMaker(object):
    def get_fortune(self, name):
        return "Hello, {0}. Here is your fortune message:\n" \
               "Behold the warranty -- the bold print giveth and the fine print taketh away.".format(name)

daemon = Pyro5.api.Daemon()             # make a Pyro daemon
uri = daemon.register(GreetingMaker)    # register the greeting maker as a Pyro object

print("Ready. Object uri =", uri)       # print the uri so we can use it in the client later
daemon.requestLoop()                    # start the event loop of the server to wait for calls





Open a console window and start the greeting server:

$ python greeting-server.py
Ready. Object uri = PYRO:obj_fbfd1d6f83e44728b4bf89b9466965d5@localhost:35845





Great, our server is running. Let’s see the client code that invokes the server:

# saved as greeting-client.py
import Pyro5.api

uri = input("What is the Pyro uri of the greeting object? ").strip()
name = input("What is your name? ").strip()

greeting_maker = Pyro5.api.Proxy(uri)     # get a Pyro proxy to the greeting object
print(greeting_maker.get_fortune(name))   # call method normally





Start this client program (from a different console window):

$ python greeting-client.py
What is the Pyro uri of the greeting object?  <<paste the uri that the server printed earlier>>
What is your name?  <<type your name; in my case: Irmen>>
Hello, Irmen. Here is your fortune message:
Behold the warranty -- the bold print giveth and the fine print taketh away.





As you can see the client code called the greeting maker that was running in the server elsewhere,
and printed the resulting greeting string.


With a name server

While the example above works, it could become tiresome to work with object uris like that.
There’s already a big issue, how is the client supposed to get the uri, if we’re not copy-pasting it?
Thankfully Pyro provides a name server that works like an automatic phone book.
You can name your objects using logical names and use the name server to search for the
corresponding uri.

We’ll have to modify a few lines in greeting-server.py to make it register the object in the name server:

# saved as greeting-server.py
import Pyro5.api

@Pyro5.api.expose
class GreetingMaker(object):
    def get_fortune(self, name):
        return "Hello, {0}. Here is your fortune message:\n" \
               "Tomorrow's lucky number is 12345678.".format(name)

daemon = Pyro5.server.Daemon()         # make a Pyro daemon
ns = Pyro5.api.locate_ns()             # find the name server
uri = daemon.register(GreetingMaker)   # register the greeting maker as a Pyro object
ns.register("example.greeting", uri)   # register the object with a name in the name server

print("Ready.")
daemon.requestLoop()                   # start the event loop of the server to wait for calls





The greeting-client.py is actually simpler now because we can use the name server to find the object:

# saved as greeting-client.py
import Pyro5.api

name = input("What is your name? ").strip()

greeting_maker = Pyro5.api.Proxy("PYRONAME:example.greeting")    # use name server object lookup uri shortcut
print(greeting_maker.get_fortune(name))





The program now needs a Pyro name server that is running. You can start one by typing the
following command: python -m Pyro5.nameserver (or simply: pyro5-ns) in a separate console window
(usually there is just one name server running in your network).
After that, start the server and client as before.
There’s no need to copy-paste the object uri in the client any longer, it will ‘discover’
the server automatically, based on the object name (example.greeting).
If you want you can check that this name is indeed known in the name server, by typing
the command python -m Pyro5.nsc list (or simply: pyro5-nsc list), which will produce:

$ pyro5-nsc list
--------START LIST
Pyro.NameServer --> PYRO:Pyro.NameServer@localhost:9090
    metadata: {'class:Pyro5.nameserver.NameServer'}
example.greeting --> PYRO:obj_198af10aa51f4fa8ab54062e65fad96a@localhost:44687
--------END LIST





(Once again the uri for our object will be random)
This concludes this simple Pyro example.


Note

In the source code there is an examples directory [https://github.com/irmen/Pyro5/tree/master/examples/] that contains a truckload
of example programs that show the various features of Pyro. If you’re interested in them
(it is highly recommended to be so!) you will have to download the Pyro distribution archive.
Installing Pyro only provides the library modules. For more information, see Configuring Pyro.





Other means of creating connections

The example above showed two of the basic ways to set up connections between your client and server code.
There are various other options, have a look at the client code details: Object discovery
and the server code details: Pyro Daemon: publishing Pyro objects. The use of the name server is optional, see
Name Server for details.




Performance

Pyro is pretty fast, but speed depends largely on many external factors:


	network connection speed


	machine and operating system


	I/O or CPU bound workload


	contents and size of the pyro call request and response messages


	the serializer being used




Experiment with the
benchmark [https://github.com/irmen/Pyro5/tree/master/examples/benchmark] ,
batchedcalls [https://github.com/irmen/Pyro5/tree/master/examples/batchedcalls] and
hugetransfer [https://github.com/irmen/Pyro5/tree/master/examples/hugetransfer]
examples to see what results you get on your own setup.





            

          

      

      

    

  

  
    
    

    Installing Pyro
    

    

    
 
  

    
      
          
            
  
Installing Pyro

This chapter will show how to obtain and install Pyro.


Compatibility

Pyro is written in 100% Python. It works on any recent operating system where a suitable
supported Python implementation is available (3.7 or newer).



Obtaining and installing Pyro


	Linux
	Some Linux distributions may offer Pyro5 through their package manager. Make sure you install the correct
one for the python version that you are using. It may be more convenient to just pip install it instead
in a virtualenv.



	Anaconda
	Anaconda users can install the Pyro5 package from conda-forge using conda install -c conda-forge pyro5



	Pip install
	pip install Pyro5 should do the trick.   Pyro is available here on pypi [http://pypi.python.org/pypi/Pyro5/] .



	Manual installation from source
	Download the source distribution archive (Pyro5-X.YZ.tar.gz) from Pypi or from a Github release [https://github.com/irmen/Pyro5/releases],
extract it and python setup.py install.
The serpent [https://pypi.python.org/pypi/serpent] serialization library must also be installed.



	Github
	Source is on Github: https://github.com/irmen/Pyro5
The required serpent serializer library is there as well: https://github.com/irmen/Serpent







Third party libraries that Pyro5 uses


	serpent [https://pypi.python.org/pypi/serpent] - required, 1.27 or newer
	Should be installed automatically when you install Pyro.



	msgpack [https://pypi.python.org/pypi/msgpack] - optional, 0.5.2 or newer
	Install this to use the msgpack serializer.







Interesting stuff that is extra in the source distribution archive and not with packaged versions

If you decide to download the distribution (.tar.gz) you have a bunch of extras over simply installing the Pyro library directly:



	examples/
	dozens of examples that demonstrate various Pyro features (highly recommended to examine these,
many paragraphs in this manual refer to relevant examples here)



	tests/
	the unittest suite that checks for correctness and regressions












            

          

      

      

    

  

  
    
    

    Tutorial
    

    

    
 
  

    
      
          
            
  
Tutorial

This tutorial will explain a couple of basic Pyro concepts.


Warm-up

Before proceeding, you should install Pyro if you haven’t done so. For instructions about that, see Installing Pyro.

In this tutorial, you will use Pyro’s default configuration settings, so once Pyro is installed, you’re all set!
All you need is a text editor and a couple of console windows.
During the tutorial, you are supposed to run everything on a single machine.
This avoids initial networking complexity.


Note

For security reasons, Pyro runs stuff on localhost by default.
If you want to access things from different machines, you’ll have to tell Pyro
to do that explicitly.





Pyro concepts and tools

Pyro enables code to call methods on objects even if that object is running on a remote machine:

+----------+                         +----------+
| server A |                         | server B |
|          |       < network >       |          |
| Python   |                         |   Python |
| OBJECT ----------foo.invoke()--------> OBJECT |
|          |                         |     foo  |
+----------+                         +----------+





Pyro is mainly used as a library in your code but it also has several supporting command line tools.
We won’t explain every one of them here as you will only need the “name server” for this tutorial.


Key concepts

Here are a couple of key concepts you encounter when using Pyro:


	Proxy
	A proxy is a substitute object for “the real thing”.
It intercepts the method calls you would normally do on an object as if it was the actual object.
Pyro then performs some magic to transfer the call to the computer that contains the real object,
where the actual method call is done, and the results are returned to the caller.
This means the calling code doesn’t have to know if it’s dealing with a normal or a remote object,
because the code is identical.
The class implementing Pyro proxies is Pyro5.client.Proxy



	URI
	This is what Pyro uses to identify every object.
(similar to what a web page URL is to point to the different documents on the web).
Its string form is like this: “PYRO:” + object name + “@” + server name + port number.
There are a few other forms it can take as well.
You can write the protocol in lowercase too if you want (“pyro:”) but it will
automatically be converted to uppercase internally.
The class implementing Pyro uris is Pyro5.core.URI



	Pyro object
	This is a normal Python object but it is registered with Pyro so that you can access it remotely.
Pyro objects are written just as any other object but the fact that Pyro knows something about
them makes them special, in the way that you can call methods on them from other programs.
A class can also be a Pyro object, but then you will also have to tell Pyro about how it
should create actual objects from that class when handling remote calls.



	Pyro daemon (server)
	This is the part of Pyro that listens for remote method calls, dispatches them
to the appropriate actual objects, and returns the results to the caller.
All Pyro objects are registered in one or more daemons.



	Pyro name server
	The name server is a utility that provides a phone book for Pyro applications: you use it to look up a “number” by a “name”.
The name in Pyro’s case is the logical name of a remote object. The number is the exact location where Pyro can contact the object.



	Serialization
	This is the process of transforming objects into streams of bytes that can be transported
over the network. The receiver deserializes them back into actual objects. Pyro needs to do
this with all the data that is passed as arguments to remote method calls, and their response
data. Not all objects can be serialized, so it is possible that passing a certain object to
Pyro won’t work even though a normal method call would accept it just fine.



	Configuration
	Pyro can be configured in a lot of ways. Using environment variables (they’re prefixed with PYRO_)
or by setting config items in your code. See the configuration chapter for more details.
The default configuration should be ok for most situations though, so you many never have to touch
any of these options at all!







Starting a name server

While the use of the Pyro name server is optional, we will use it in this tutorial.
It also shows a few basic Pyro concepts, so let us begin by explaining a little about it.
Open a console window and execute the following command to start a name server:

python -m Pyro5.nameserver (or simply: pyro5-ns)

The name server will start and it prints something like:

Not starting broadcast server for IPv6.
NS running on localhost:9090 (::1)
URI = PYRO:Pyro.NameServer@localhost:9090






Localhost

By default, Pyro uses localhost to run stuff on, so you can’t by mistake expose your system to the outside world.
You’ll need to tell Pyro explicitly to use something else than localhost. But it is fine for the tutorial,
so we leave it as it is.


The name server has started and is listening on localhost port 9090. (If your operating system supports it,
it will likely use Ipv6 as well rather than the older Ipv4 addressing).

It also printed an URI. Remember, this is
what Pyro uses to identify every object. The nameserver itself is also just a Pyro object!

The name server can be stopped with a control-c, or on Windows, with ctrl-break. But let it run
in the background for the rest of this tutorial.



Interacting with the name server

There’s another command line tool that let you interact with the name server: “nsc” (name server control tool).
You can use it, amongst other things, to see what all known registered objects in the naming server are.
Let’s do that right now. Type:

python -m Pyro5.nsc list (or simply: pyro5-nsc list)

and it will print something like this:

--------START LIST
Pyro.NameServer --> PYRO:Pyro.NameServer@localhost:9090
    metadata: {'class:Pyro5.nameserver.NameServer'}
--------END LIST





The only object that is currently registered, is the name server itself! (Yes, the name server is a Pyro object
itself. Pyro and the “nsc” tool are using Pyro to talk to it).


Note

As you can see, the name Pyro.NameServer is registered to point to the URI that we saw earlier.
This is mainly for completeness sake, and is not often used, because there are different ways to get
to talk to the name server (see below).




The NameServer object

The name server itself is a normal Pyro object which means the ‘nsc’ tool, and any other code that talks to it,
is just using normal Pyro methods. What makes it a bit different from other Pyro servers
is that is includes a broadcast responder (for discovery).


There’s a little detail left unexplained: How did the nsc tool know where the name server was?

Pyro has a couple of ways to locate a name server.  The nsc tool uses those too:
there is a network broadcast discovery to see if there’s a name server available somewhere (the name server contains
a broadcast responder that will respond “Yeah hi I’m here”).  So in many cases you won’t have to configure anything
to be able to discover the name server. If nobody answers though, Pyro tries the configured default or custom location.
If still nobody answers it prints a sad message and exits.
However if it found the name server, it is then possible to talk to it and get the location of any other registered object.
This means that you won’t have to hard code any object locations in your code,
and that the code is capable of dynamically discovering everything at runtime.




Not using the Name server

In both tutorials above we used the Name Server for easy object lookup.
The use of the name server is optional, see Name Server for details.
There are various other options for connecting your client code to your Pyro objects,
have a look at the client code details: Object discovery
and the server code details: Pyro Daemon: publishing Pyro objects.



Tutorial examples

Pyro5 includes dozens of examples. You can find them in the source distribution [https://github.com/irmen/Pyro5/archive/master.zip],
or online on github [https://github.com/irmen/Pyro5/tree/master/examples].

Historically, two of them (warehouse and stockmarket) were used in this manual to walk you through creating
a complete Pyro program.  You can still read these tutorials in the Pyro4 manual, they’re still almost unchanged
in Pyro5 (follow along with the pyro5 example code to spot the few differences):


	Pyro4 tutorial building a warehouse [https://pyro4.readthedocs.io/en/stable/tutorials.html#building-a-warehouse]


	Pyro4 tutorial stockmarket simulator [https://pyro4.readthedocs.io/en/stable/tutorials.html#building-a-stock-market-simulator]




They’re useful starting points (especially since the examples are created in multiple phases),
but there are many more concepts to explore in the other examples so don’t hesitate to browse through them.





            

          

      

      

    

  

  
    
    

    Command line tools
    

    

    
 
  

    
      
          
            
  
Command line tools

Pyro has several command line tools that you will be using sooner or later. They are
generated and installed when you install Pyro.


	pyro5-ns (name server)


	pyro5-nsc (name server client tool)


	pyro5-echoserver (test echo server)


	pyro5-check-config (prints configuration)


	pyro5-httpgateway (http gateway server)




If you prefer, you can also invoke the various “executable modules” inside Pyro directly,
by using Python’s “-m” command line argument.

Some of these tools are described in detail in their respective sections of the manual:


	Name server tools:
	See Starting the Name Server and Name server control tool for detailed information.



	HTTP gateway server:
	See Pyro via HTTP and JSON for detailed information.






Test echo server

python -m Pyro5.utils.echoserver [options]  (or simply: pyro5-echoserver [options])

This is a simple built-in server that can be used for testing purposes.
It launches a Pyro object that has several methods suitable for various tests (see below).
Optionally it can also directly launch a name server. This way you can get a simple
Pyro server plus name server up with just a few keystrokes.

A short explanation of the available options can be printed with the help option:


	
-h, --help

	Print a short help message and exit.





The echo server object is available by the name test.echoserver. It exposes the following methods:


	
echo(argument)

	Simply returns the given argument object again.






	
error()

	Generates a run time exception.






	
shutdown()

	Terminates the echo server.







Configuration check

python -m Pyro5.configure  (or simply: pyro5-check-config)
This is the equivalent of:

>>> import Pyro5
>>> print(Pyro5.config.dump())





It prints the Pyro version, the location it is imported from, and a dump of the active configuration items.





            

          

      

      

    

  

  
    
    

    Clients: Calling remote objects
    

    

    
 
  

    
      
          
            
  
Clients: Calling remote objects

This chapter explains how you write code that calls remote objects.
Often, a program that calls methods on a Pyro object is called a client program.
(The program that provides the object and actually runs the methods, is the server.
Both roles can be mixed in a single program.)

Make sure you are familiar with Pyro’s Key concepts before reading on.


Object discovery

To be able to call methods on a Pyro object, you have to tell Pyro where it can find
the actual object. This is done by creating an appropriate URI, which contains amongst
others the object name and the location where it can be found.
You can create it in a number of ways.


	
	directly use the object name and location.
	This is the easiest way and you write an URI directly like this: PYRO:someobjectid@servername:9999
It requires that you already know the object id, servername, and port number.
You could choose to use fixed object names and fixed port numbers to connect Pyro daemons on.
For instance, you could decide that your music server object is always called “musicserver”,
and is accessible on port 9999 on your server musicbox.my.lan. You could then simply use:

uri_string = "PYRO:musicserver@musicbox.my.lan:9999"
# or use Pyro5.api.URI("...") for an URI object instead of a string





Most examples that come with Pyro simply ask the user to type this in on the command line,
based on what the server printed. This is not very useful for real programs,
but it is a simple way to make it work. You could write the information to a file
and read that from a file share (only slightly more useful, but it’s just an idea).







	
	use a logical name and look it up in the name server.
	A more flexible way of locating your objects is using logical names for them and storing
those in the Pyro name server. Remember that the name server is like a phone book, you look
up a name and it gives you the exact location.
To continue on the previous bullet, this means your clients would only have to know the
logical name “musicserver”. They can then use the name server to obtain the proper URI:

import Pyro5.api
nameserver = Pyro5.api.locate_ns()
uri = nameserver.lookup("musicserver")
# ... uri now contains the URI with actual location of the musicserver object





You might wonder how Pyro finds the Name server. This is explained in the separate chapter Name Server.







	
	use a logical name and let Pyro look it up in the name server for you.
	Very similar to the option above, but even more convenient, is using the meta-protocol
identifier PYRONAME in your URI string. It lets Pyro know that it should lookup
the name following it, in the name server. Pyro should then
use the resulting URI from the name server to contact the actual object.
See The PYRONAME protocol type.
This means you can write:

uri_string = "PYRONAME:musicserver"
# or Pyro5.api.URI("PYRONAME:musicserver") for an URI object





You can use this URI everywhere you would normally use a normal uri (using PYRO).
Everytime Pyro encounters the PYRONAME uri it will use the name server automatically
to look up the object for you. [1]







	
	use object metadata tagging to look it up (yellow-pages style lookup).
	You can do this directly via the name server for maximum control, or use the PYROMETA protocol type.
See The PYROMETA protocol type. This means you can write:

uri_string = "PYROMETA:metatag1,metatag2"
# or Pyro5.api.URI("PYROMETA:metatag1,metatag2") for an URI object





You can use this URI everywhere you would normally use a normal uri.
Everytime Pyro encounters the PYROMETA uri it will use the name server automatically
to find a random object for you with the given metadata tags. [1]











[1]
(1,2)
this is not very efficient if it occurs often. Have a look at the Tips & Tricks
chapter for some hints about this.





Calling methods

Once you have the location of the Pyro object you want to talk to, you create a Proxy for it.
Normally you would perhaps create an instance of a class, and invoke methods on that object.
But with Pyro, your remote method calls on Pyro objects go through a proxy.
The proxy can be treated as if it was the actual object, so you write normal python code
to call the remote methods and deal with the return values, or even exceptions:

# Continuing our imaginary music server example.
# Assume that uri contains the uri for the music server object.

musicserver = Pyro5.api.Proxy(uri)
try:
    musicserver.load_playlist("90s rock")
    musicserver.play()
    print("Currently playing:", musicserver.current_song())
except MediaServerException:
    print("Couldn't select playlist or start playing")





For normal usage, there’s not a single line of Pyro specific code once you have a proxy!



Accessing remote attributes

You can access exposed attributes of your remote objects directly via the proxy.
If you try to access an undefined or unexposed attribute, the proxy will raise an AttributeError stating the problem.
Note that direct remote attribute access only works if the metadata feature is enabled (METADATA config item, enabled by default).

import Pyro5.api

p = Pyro5.api.Proxy("...")
velo = p.velocity    # attribute access, no method call
print("velocity = ", velo)





See the attributes example [https://github.com/irmen/Pyro5/tree/master/examples/attributes] for more information.



Serialization

Pyro will serialize the objects that you pass to the remote methods, so they can be sent across
a network connection. Depending on the serializer that is being used, there will be some limitations
on what objects you can use.


	serpent: the default serializer. Serializes into Python literal expressions. Accepts quite a lot of different types.
Many will be serialized as dicts. You might need to explicitly translate literals back to specific types
on the receiving end if so desired, because most custom classes aren’t dealt with automatically.
Requires third party library module, but it will be installed automatically as a dependency of Pyro.


	json: more restricted as serpent, less types supported. Part of the standard library.


	marshal: a very limited but very fast serializer. Can deal with a small range of builtin types only,
no custom classes can be serialized. Part of the standard library.


	msgpack: See https://pypi.python.org/pypi/msgpack Reasonably fast serializer (and a lot faster if you’re using the C module extension).
Can deal with many builtin types, but not all.   Not enabled by default because it’s optional,
but it’s safe to add to the accepted serializers config item if you have it installed.




You select the serializer to be used by setting the SERIALIZER config item. (See the Configuring Pyro chapter).
The valid choices are the names of the serializer from the list mentioned above.

It is possible to override the serializer on a particular proxy. This allows you to connect to one server
using the default serpent serializer and use another proxy to connect to a different server using the json
serializer, for instance. Set the desired serializer name in proxy._pyroSerializer to override.


Customizing serialization

By default, custom classes are serialized into a dict.
They are not deserialized back into instances of your custom class. This avoids possible security issues.
An exception to this however are certain classes in the Pyro5 package itself (such as the URI and Proxy classes).
They are deserialized back into objects of that certain class, because they are critical for Pyro to function correctly.

There are a few hooks however that allow you to extend this default behaviour and register certain custom
converter functions. These allow you to change the way your custom classes are treated, and allow you
to actually get instances of your custom class back from the deserialization if you so desire.


	The hooks are provided via several methods:
	Pyro5.api.register_class_to_dict() and Pyro5.api.register_dict_to_class()



	and their unregister-counterparts:
	Pyro5.api.unregister_class_to_dict() and Pyro5.api.unregister_dict_to_class()





Click on the method link to see its apidoc, or have a look at the
custom-serialization example [https://github.com/irmen/Pyro5/tree/master/examples/custom-serialization]
and the
test_serialize unit tests [https://github.com/irmen/Pyro5/blob/master/tests/test_serialize.py]
for more information.
It is recommended to avoid using these hooks if possible, there’s a security risk
to create arbitrary objects from serialized data that is received from untrusted sources.




Proxies, connections, threads and cleaning up

Here are some rules:


	Every single Proxy object will have its own socket connection to the daemon.


	You cannot share Proxy objects among threads. One single thread ‘owns’ a proxy.  It is possible to explicitly transfer ownership to another thread.


	Usually every connection in the daemon has its own processing thread there, but for more details see the Servers: hosting Pyro objects chapter.


	Consider cleaning up a proxy object explicitly if you know you won’t be using it again in a while. That will free up resources and socket connections.
You can do this in two ways:


	calling _pyroRelease() on the proxy.


	using the proxy as a context manager in a with statement. This is the preferred way of creating and using Pyro proxies.
This ensures that when you’re done with it, or an error occurs (inside the with-block),
the connection is released:

with Pyro5.api.Proxy(".....") as obj:
    obj.method()









Note: you can still use the proxy object when it is disconnected: Pyro will reconnect it for you as soon as it’s needed again.



	At proxy creation, no actual connection is made. The proxy is only actually connected at first use, or when you manually
connect it using the _pyroReconnect() or _pyroBind() methods.






Oneway calls

Normal method calls always block until the response is returned. This can be any normal return value, None,
or an error in the form of a raised exception. The client code execution is suspended until the method call
has finished and produced its result.

Some methods never return any response or you are simply not interested in it (including errors and
exceptions!), or you don’t want to wait until the result is available but rather continue immediately.
You can tell Pyro that calls to these methods should be done as one-way calls.
For calls to such methods, Pyro will not wait for a response from the remote object.
The return value of these calls is always None, which is returned immediately after submitting the method
invocation to the server. The server will process the call while your client continues execution.
The client can’t tell if the method call was successful, because no return value, no errors and no exceptions will be returned!
If you want to find out later what - if anything - happened, you have to call another (non-oneway) method that does return a value.

How to make methods one-way:
You mark the methods of your class in the server as one-way by using a special decorator.
See Creating a Pyro class and exposing its methods and properties for details on how to do this.
See the oneway example [https://github.com/irmen/Pyro5/tree/master/examples/oneway]
for some code that demonstrates the use of oneway methods.



Batched calls

Doing many small remote method calls in sequence has a fair amount of latency and overhead.
Pyro provides a means to gather all these small calls and submit it as a single ‘batched call’.
When the server processed them all, you get back all results at once.
Depending on the size of the arguments, the network speed, and the amount of calls,
doing a batched call can be much faster than invoking every call by itself.
Note that this feature is only available for calls on the same proxy object.

How it works:


	You create a batch proxy object for the proxy object.


	Call all the methods you would normally call on the regular proxy, but use the batch proxy object instead.


	Call the batch proxy object itself to obtain the generator with the results.




You create a batch proxy using this: batch = Pyro5.api.BatchProxy(proxy).
The signature of the batch proxy call is as follows:


	
batchproxy.__call__([oneway=False])

	Invoke the batch and when done, returns a generator that produces the results of every call, in order.
If oneway==True, perform the whole batch as one-way calls, and return None immediately.
If asynchronous==True, perform the batch asynchronously, and return an asynchronous call result object immediately.





Simple example:

batch = Pyro5.api.BatchProxy(proxy)
batch.method1()
batch.method2()
# more calls ...
batch.methodN()
results = batch()   # execute the batch
for result in results:
    print(result)   # process result in order of calls...





Oneway batch:

results = batch(oneway=True)
# results==None





See the batchedcalls example [https://github.com/irmen/Pyro5/tree/master/examples/batchedcalls] for more details.



Remote iterators/generators

You can iterate over a remote iterator or generator function as if it
was a perfectly normal Python iterable. Pyro will fetch the items one by one from the server that is
running the remote iterator until all elements have been consumed or the client disconnects.


Filter on the server

If you plan to filter the items that are returned from the iterator,
it is strongly suggested to do that on the server and not in your client.
Because otherwise it is possible that you first have
to serialize and transfer all possible items from the server only to select
a few out of them, which is very inefficient.

Beware of many small items

Pyro has to do a remote call to get every next item from the iterable.
If your iterator produces lots of small individual items, this can be quite
inefficient (many small network calls). Either chunk them up a bit or
use larger individual items.


So you can write in your client:

proxy = Pyro5.api.Proxy("...")
for item in proxy.things():
    print(item)





The implementation of the things method can return a normal list but can
also return an iterator or even be a generator function itself. This has the usual benefits of “lazy” generators:
no need to create the full collection upfront which can take a lot of memory, possibility
of infinite sequences, and spreading computation load more evenly.

By default the remote item streaming is enabled in the server and there is no time limit set
for how long iterators and generators can be ‘alive’ in the server. You can configure this however
if you want to restrict resource usage or disable this feature altogether, via the
ITER_STREAMING and ITER_STREAM_LIFETIME config items.

Lingering when disconnected: the ITER_STREAM_LINGER config item controls the number of seconds
a remote generator is kept alive when a disconnect happens. It defaults to 30 seconds. This allows
you to reconnect the proxy and continue using the remote generator as if nothing happened
(see Pyro5.client.Proxy._pyroReconnect() or even Automatic reconnecting). If you reconnect the
proxy and continue iterating again after the lingering timeout period expired, an exception is thrown
because the remote generator has been discarded in the meantime.
Lingering can be disabled completely by setting the value to 0, then all remote generators from a proxy will
immediately be discarded in the server if the proxy gets disconnected or closed.

There are several examples that use the remote iterator feature. Have a look at the
streaming [https://github.com/irmen/Pyro5/tree/master/examples/streaming] ,
stockquotes [https://github.com/irmen/Pyro5/tree/master/examples/stockquotes] or the
filetransfer [https://github.com/irmen/Pyro5/tree/master/examples/filetransfer] examples.



Pyro Callbacks

Usually there is a nice separation between a server and a client.
But with some Pyro programs it is not that simple.
It isn’t weird for a Pyro object in a server somewhere to invoke a method call
on another Pyro object, that could even be running in the client program doing the initial call.
In this case the client program is a server itself as well.

These kinds of ‘reverse’ calls are labeled callbacks. You have to do a bit of
work to make them possible, because normally, a client program is not running the required
code to also act as a Pyro server to accept incoming callback calls.

In fact, you have to start a Pyro daemon and register the callback Pyro objects in it,
just as if you were writing a server program.
Keep in mind though that you probably have to run the daemon’s request loop in its own
background thread. Or make heavy use of oneway method calls.
If you don’t, your client program won’t be able to process the callback requests because
it is by itself still waiting for results from the server.

Exceptions in callback objects:
If your callback object raises an exception, Pyro will return that to the server doing the
callback. Depending on what the server does with it, you might never see the actual exception,
let alone the stack trace. This is why Pyro provides a decorator that you can use
on the methods in your callback object in the client program: @Pyro5.api.callback.
This way, an exception in that method is not only returned to the caller, but also
logged locally in your client program, so you can see it happen including the
stack trace (if you have logging enabled):

import Pyro5.api

class Callback(object):

    @Pyro5.api.expose
    @Pyro5.api.callback
    def call(self):
        print("callback received from server!")
        return 1//0    # crash!





Also notice that the callback method (or the whole class) has to be decorated
with @Pyro5.api.expose as well to allow it to be called remotely at all.
See the callback example [https://github.com/irmen/Pyro5/tree/master/examples/callback] for more details and code.



Miscellaneous features

Pyro provides a few miscellaneous features when dealing with remote method calls.
They are described in this section.


Error handling

You can just do exception handling as you would do when writing normal Python code.
However, Pyro provides a few extra features when dealing with errors that occurred in
remote objects. This subject is explained in detail its own chapter: Exceptions and remote tracebacks.

See the exceptions example [https://github.com/irmen/Pyro5/tree/master/examples/exceptions] for more details.



Timeouts

Because calls on Pyro objects go over the network, you might encounter network related problems that you
don’t have when using normal objects. One possible problems is some sort of network hiccup
that makes your call unresponsive because the data never arrived at the server or the response never
arrived back to the caller.

By default, Pyro waits an indefinite amount of time for the call to return. You can choose to
configure a timeout however. This can be done globally (for all Pyro network related operations)
by setting the timeout config item:

Pyro5.config.COMMTIMEOUT = 1.5      # 1.5 seconds





You can also do this on a per-proxy basis by setting the timeout property on the proxy:

proxy._pyroTimeout = 1.5    # 1.5 seconds





See the timeout example [https://github.com/irmen/Pyro5/tree/master/examples/timeout] for more details.

Also, there is a automatic retry mechanism for timeout or connection closed (by server side),
in order to use this automatically retry:

Pyro5.config.MAX_RETRIES = 3      # attempt to retry 3 times before raise the exception





You can also do this on a pre-proxy basis by setting the max retries property on the proxy:

proxy._pyroMaxRetries = 3      # attempt to retry 3 times before raise the exception





Be careful to use when remote functions have a side effect (e.g.: calling twice results in error)!
See the autoretry example [https://github.com/irmen/Pyro5/tree/master/examples/autoretry] for more details.



Automatic reconnecting

If your client program becomes disconnected to the server (because the server crashed for instance),
Pyro will raise a Pyro5.errors.ConnectionClosedError.
You can use the automatic retry mechanism to handle this exception, see the autoretry example [https://github.com/irmen/Pyro5/tree/master/examples/autoretry] for more details.
Alternatively, it is also possible to catch this and tell Pyro to attempt to reconnect to the server by calling
_pyroReconnect() on the proxy (it takes an optional argument: the number of attempts
to reconnect to the daemon. By default this is almost infinite). Once successful, you can resume operations
on the proxy:

try:
    proxy.method()
except Pyro5.errors.ConnectionClosedError:
    # connection lost, try reconnecting
    obj._pyroReconnect()





This will only work if you take a few precautions in the server. Most importantly, if it crashed and comes
up again, it needs to publish its Pyro objects with the exact same URI as before (object id, hostname, daemon
port number).

See the autoreconnect example [https://github.com/irmen/Pyro5/tree/master/examples/autoreconnect] for more details and some suggestions on how to do this.

The _pyroReconnect() method can also be used to force a newly created proxy to connect immediately,
rather than on first use.



Proxy sharing between threads

A proxy is ‘owned’ by a thread. You cannot use it from another thread.
Pyro does not allow you to share the same proxy across different threads,
because concurrent access to the same network connection will likely corrupt the
data sequence.

You can explicitly transfer ownership of a proxy to another thread via the proxy’s _pyroClaimOwnership() method.
The current thread then claims the ownership of this proxy from another thread. Any existing connection will remain active.

See the threadproxysharing example [https://github.com/irmen/Pyro5/tree/master/examples/threadproxysharing] for more details.



Metadata from the daemon

A proxy contains some meta-data about the object it connects to.
It obtains the data via the (public) Pyro5.server.DaemonObject.get_metadata() method on the daemon
that it connects to. This method returns the following information about the object (or rather, its class):
what methods and attributes are defined, and which of the methods are to be called as one-way.
This information is used to properly execute one-way calls, and to do client-side validation of calls on the proxy
(for instance to see if a method or attribute is actually available, without having to do a round-trip to the server).
Also this enables a properly working hasattr on the proxy, and efficient and specific error messages
if you try to access a method or attribute that is not defined or not exposed on the Pyro object.
Lastly the direct access to attributes on the remote object is also made possible, because the proxy knows about what
attributes are available.






            

          

      

      

    

  

  
    
    

    Servers: hosting Pyro objects
    

    

    
 
  

    
      
          
            
  
Servers: hosting Pyro objects

This chapter explains how you write code that publishes objects to be remotely accessible.
These objects are then called Pyro objects and the program that provides them,
is often called a server program.

(The program that calls the objects is usually called the client.
Both roles can be mixed in a single program.)

Make sure you are familiar with Pyro’s Key concepts before reading on.


See also

Configuring Pyro for several config items that you can use to tweak various server side aspects.




Creating a Pyro class and exposing its methods and properties

Exposing classes, methods and properties is done using the @Pyro5.server.expose decorator.
It lets you mark the following items to be available for remote access:


	methods (including classmethod and staticmethod). You cannot expose a ‘private’ method, i.e. name starting with underscore.
You can expose a ‘dunder’ method with double underscore for example __len__. There is a short list of dunder methods that
will never be remoted though (because they are essential to let the Pyro proxy function correctly).
Make sure you put the @expose decorator after other decorators on the method, if any.


	properties (these will be available as remote attributes on the proxy) It’s not possible to expose a ‘private’ property
(name starting with underscore). You can’t expose attributes directly. It is required to provide a @property for them
and decorate that with @expose, if you want to provide a remotely accessible attribute.


	classes as a whole (exposing a class has the effect of exposing every nonprivate method and property of the class automatically)




Anything that isn’t decorated with @expose is not remotely accessible.


Important

Private methods and attributes:
In the spirit of being secure by default, Pyro doesn’t allow remote access to anything of your class unless
explicitly told to do so. It will never allow remote access to ‘private’ methods and attributes
(where ‘private’ means that their name starts with a single or double underscore).
There’s a special exception for the regular ‘dunder’ names with double underscores such as __len__ though.



Here’s a piece of example code that shows how a partially exposed Pyro class may look like:

import Pyro5.server

class PyroService(object):

    value = 42                  # not exposed

    def __dunder__(self):       # exposed
        pass

    def _private(self):         # not exposed
        pass

    def __private(self):        # not exposed
        pass

    @Pyro5.server.expose
    def get_value(self):        # exposed
        return self.value

    @Pyro5.server.expose
    @property
    def attr(self):             # exposed as 'proxy.attr' remote attribute
        return self.value

    @Pyro5.server.expose
    @attr.setter
    def attr(self, value):      # exposed as 'proxy.attr' writable
        self.value = value





Specifying one-way methods using the @Pyro5.server.oneway decorator:

You decide on the class of your Pyro object on the server, what methods are to be called as one-way.
You use the @Pyro5.server.oneway decorator on these methods to mark them for Pyro.
When the client proxy connects to the server it gets told automatically what methods are one-way,
you don’t have to do anything on the client yourself. Any calls your client code makes on the proxy object
to methods that are marked with @Pyro5.server.oneway on the server, will happen as one-way calls:

import Pyro5

@Pyro5.server.expose
class PyroService(object):

    def normal_method(self, args):
        result = do_long_calculation(args)
        return result

    @Pyro5.server.oneway
    def oneway_method(self, args):
        result = do_long_calculation(args)
        # no return value, cannot return anything to the client





See Oneway calls for the documentation about how client code handles this.
See the oneway example [https://github.com/irmen/Pyro5/tree/master/examples/oneway] for some code that demonstrates the use of oneway methods.



Exposing classes and methods without changing existing source code

In the case where you cannot or don’t want to change existing source code,
it’s not possible to use the @expose decorator to tell Pyro what methods should be exposed.
This can happen if you’re dealing with third-party library classes or perhaps a generic module that
you don’t want to ‘taint’ with a Pyro dependency because it’s used elsewhere too.

There are a few possibilities to deal with this:

Use adapter classes

The preferred solution is to not use the classes from the third party library directly, but create an adapter class yourself
with the appropriate @expose set on it or on its methods. Register this adapter class instead.
Then use the class from the library from within your own adapter class.
This way you have full control over what exactly is exposed, and what parameter and return value types
travel over the wire.

Create exposed classes by using ``@expose`` as a function

Creating adapter classes is good but if you’re looking for the most convenient solution we can do better.
You can still use @expose to make a class a proper Pyro class with exposed methods,
without having to change the source code due to adding @expose decorators, and without having
to create extra classes yourself.
Remember that Python decorators are just functions that return another function (or class)? This means you can also
call them as a regular function yourself, which allows you to use classes from third party libraries like this:

from awesome_thirdparty_library import SomeClassFromLibrary
import Pyro5.server

# expose the class from the library using @expose as wrapper function:
ExposedClass = Pyro5.server.expose(SomeClassFromLibrary)

daemon.register(ExposedClass)    # register the exposed class rather than the library class itself





There are a few caveats when using this:


	You can only expose the class and all its methods as a whole, you can’t cherrypick methods that should be exposed


	You have no control over what data is returned from the methods. It may still be required to deal with
serialization issues for instance when a method of the class returns an object whose type is again a class from the library.




See the thirdpartylib example [https://github.com/irmen/Pyro5/tree/master/examples/thirdpartylib] for a little server that deals with such a third party library.



Pyro Daemon: publishing Pyro objects

To publish a regular Python object and turn it into a Pyro object,
you have to tell Pyro about it. After that, your code has to tell Pyro to start listening for incoming
requests and to process them. Both are handled by the Pyro daemon.

In its most basic form, you create one or more classes that you want to publish as Pyro objects,
you create a daemon, register the class(es) with the daemon, and then enter the daemon’s request loop:

import Pyro5.server

@Pyro5.server.expose
class MyPyroThing(object):
    # ... methods that can be called go here...
    pass

daemon = Pyro5.server.Daemon()
uri = daemon.register(MyPyroThing)
print(uri)
daemon.requestLoop()





Once a client connects, Pyro will create an instance of the class and use that single object
to handle the remote method calls during one client proxy session. The object is removed once
the client disconnects. Another client will cause another instance to be created for its session.
You can control more precisely when, how, and for how long Pyro will create an instance of your Pyro class.
See Controlling Instance modes and Instance creation below for more details.

Anyway, when you run the code printed above, the uri will be printed and the server sits waiting for requests.
The uri that is being printed looks a bit like this: PYRO:obj_dcf713ac20ce4fb2a6e72acaeba57dfd@localhost:51850
Client programs use these uris to access the specific Pyro objects.


Note

From the address in the uri that was printed you can see that Pyro by default binds its daemons on localhost.
This means you cannot reach them from another machine on the network (a security measure).
If you want to be able to talk to the daemon from other machines, you have to
explicitly provide a hostname to bind on. This is done by giving a host argument to
the daemon, see the paragraphs below for more details on this.




Note

Private methods:
Pyro considers any method or attribute whose name starts with at least one underscore (‘_’), private.
These cannot be accessed remotely.
An exception is made for the ‘dunder’ methods with double underscores, such as __len__. Pyro follows
Python itself here and allows you to access these as normal methods, rather than treating them as private.




Note

You can publish any regular Python object as a Pyro object.
However since Pyro adds a few Pyro-specific attributes to the object, you can’t use:


	types that don’t allow custom attributes, such as the builtin types (str and int for instance)


	types with __slots__ (a possible way around this is to add Pyro’s custom attributes to your __slots__, but that isn’t very nice)







Note

Most of the the time a Daemon will keep running. However it’s still possible to nicely free its resources
when the request loop terminates by simply using it as a context manager in a with statement, like so:

with Pyro5.server.Daemon() as daemon:
    daemon.register(...)
    daemon.requestLoop()








Oneliner Pyro object publishing: Pyro5.server.serve()

Ok not really a one-liner, but one statement: use serve() to publish a dict of objects/classes and start Pyro’s request loop.
The code above could also be written as:

import Pyro5.server

@Pyro5.server.expose
class MyPyroThing(object):
    pass

obj = MyPyroThing()
Pyro5.server.serve(
    {
        MyPyroThing: None,    # register the class
        obj: None             # register one specific instance
    },
    ns=False)





You can perform some limited customization:


	
serve(objects [host=None, port=0, daemon=None, use_ns=True, verbose=True])

	Very basic method to fire up a daemon that hosts a bunch of objects.
The objects will be registered automatically in the name server if you specify this.
API reference: Pyro5.server.serve()


	Parameters:

	
	objects (dict) – mapping of objects/classes to names, these are the Pyro objects that will be hosted by the daemon, using the names you provide as values in the mapping.
Normally you’ll provide a name yourself but in certain situations it may be useful to set it to None. Read below for the exact behavior there.


	host (str or None) – optional hostname where the daemon should be reached on. Details below at Creating a Daemon


	port (int) – optional port number where the daemon should be accessible on


	daemon (Pyro5.server.Daemon) – optional existing daemon to use, that you created yourself.
If you don’t specify this, the method will create a new daemon object by itself.


	use_ns – optional, if True (the default), the objects will also be registered in the name server (located using Pyro5.core.locate_ns()) for you.
If this parameters is False, your objects will only be hosted in the daemon and are not published in a name server.
Read below about the exact behavior of the object names you provide in the objects dictionary.


	verbose (bool) – optional, if True (the default), print out a bit of info on the objects that are registered






	Returns:

	nothing, it starts the daemon request loop and doesn’t return until that stops.









If you set use_ns=True (the default) your objects will appear in the name server as well.
Usually this means you provide a logical name for every object in the objects dictionary.
If you don’t (= set it to None), the object will still be available in the daemon (by a generated name) but will not be registered
in the name server (this is a bit strange, but hey, maybe you don’t want all the objects to be visible in the name server).

When not using a name server at all (use_ns=False), the names you provide are used as the object names
in the daemon itself. If you set the name to None in this case, your object will get an automatically generated internal name,
otherwise your own name will be used.


Important


	The names you provide for each object have to be unique (or None). For obvious reasons you can’t register multiple objects with the same names.


	if you use None for the name, you have to use the verbose setting as well, otherwise you won’t know the name that Pyro generated for you.
That would make your object more or less unreachable.






The uri that is used to register your objects in the name server with, is of course generated by the daemon.
So if you need to influence that, for instance because of NAT/firewall issues,
it is the daemon’s configuration you should be looking at.

If you don’t provide a daemon yourself, serve() will create a new one for you using the default configuration or
with a few custom parameters you can provide in the call, as described above.
If you don’t specify the host and port parameters, it will simple create a Daemon using the default settings.
If you do specify host and/or port, it will use these as parameters for creating the Daemon (see next paragraph).
If you need to further tweak the behavior of the daemon, you have to create one yourself first, with the desired
configuration. Then provide it to this function using the daemon parameter. Your daemon will then be used instead of a new one:

custom_daemon = Pyro5.server.Daemon(host="example", nathost="example")    # some additional custom configuration
Pyro5.server.serve(
    {
        MyPyroThing: None
    },
    daemon = custom_daemon)







Creating a Daemon

Pyro’s daemon is Pyro5.server.Daemon.
It has a few optional arguments when you create it:


	
Daemon([host=None, port=0, unixsocket=None, nathost=None, natport=None, interface=DaemonObject, connected_socket=None])

	Create a new Pyro daemon.


	Parameters:

	
	host (str or None) – the hostname or IP address to bind the server on. Default is None which means it uses the configured default (which is localhost).
It is necessary to set this argument to a visible hostname or ip address, if you want to access the daemon from other machines.
When binding to a hostname be careful of your OS’s policies as it might still bind to localhost as well. Depending on your DNS
setup you may have to use “”, “0.0.0.0” or an explicit externally visible IP addres to make the server accessible over the network.


	port (int) – port to bind the server on. Defaults to 0, which means to pick a random port.


	unixsocket (str or None) – the name of a Unix domain socket to use instead of a TCP/IP socket. Default is None (don’t use).


	nathost – hostname to use in published addresses (useful when running behind a NAT firewall/router). Default is None which means to just use the normal host.
For more details about NAT, see Pyro behind a NAT router/firewall.


	natport – port to use in published addresses (useful when running behind a NAT firewall/router). If you use 0 here,
Pyro will replace the NAT-port by the internal port number to facilitate one-to-one NAT port mappings.


	interface (socket) – optional alternative daemon object implementation (that provides the Pyro API of the daemon itself)


	connected_socket – optional existing socket connection to use instead of creating a new server socket














Registering objects/classes

Every object you want to publish as a Pyro object needs to be registered with the daemon.
You can let Pyro choose a unique object id for you, or provide a more readable one yourself.


	
Daemon.register(obj_or_class[, objectId=None, force=False, weak=False])

	Registers an object with the daemon to turn it into a Pyro object.


	Parameters:

	
	obj_or_class – the singleton instance or class to register (class is the preferred way)


	objectId (str or None) – optional custom object id (must be unique). Default is to let Pyro create one for you.


	force (bool) – optional flag to force registration, normally Pyro checks if an object had already been registered.
If you set this to True, the previous registration (if present) will be silently overwritten.


	weak – only store weak reference to the object, automatically unregistering it when it is garbage-collected. Without this, the daemon will keep the object alive by having it stored in its mapping, preventing garbage-collection until manual unregistration.






	Returns:

	an uri for the object



	Return type:

	Pyro5.core.URI









It is important to do something with the uri that is returned: it is the key to access the Pyro object.
You can save it somewhere, or perhaps print it to the screen.
The point is, your client programs need it to be able to access your object (they need to create a proxy with it).

Maybe the easiest thing is to store it in the Pyro name server.
That way it is almost trivial for clients to obtain the proper uri and connect to your object.
See Name Server for more information (Registering object names), but it boils down to
getting a name server proxy and using its register method:

uri = daemon.register(some_object)
ns = Pyro5.core.locate_ns()
ns.register("example.objectname", uri)






Note

If you ever need to create a new uri for an object, you can use Pyro5.server.Daemon.uriFor().
The reason this method exists on the daemon is because an uri contains location information and
the daemon is the one that knows about this.




Intermission: Example 1: server and client not using name server

A little code example that shows the very basics of creating a daemon and publishing a Pyro object with it.
Server code:

import Pyro5.server

@Pyro5.server.expose
class Thing(object):
    def method(self, arg):
        return arg*2

# ------ normal code ------
daemon = Pyro5.server.Daemon()
uri = daemon.register(Thing)
print("uri=",uri)
daemon.requestLoop()

# ------ alternatively, using serve -----
Pyro5.server.serve(
    {
        Thing: None
    },
    ns=False, verbose=True)





Client code example to connect to this object:

import Pyro5.client
# use the URI that the server printed:
uri = "PYRO:obj_b2459c80671b4d76ac78839ea2b0fb1f@localhost:49383"
thing = Pyro5.client.Proxy(uri)
print(thing.method(42))   # prints 84





With correct additional parameters –described elsewhere in this chapter– you can control on which port the daemon is listening,
on what network interface (ip address/hostname), what the object id is, etc.



Intermission: Example 2: server and client, with name server

A little code example that shows the very basics of creating a daemon and publishing a Pyro object with it,
this time using the name server for easier object lookup.
Server code:

import Pyro5.server
import Pyro5.core

@Pyro5.server.expose
class Thing(object):
    def method(self, arg):
        return arg*2

# ------ normal code ------
daemon = Pyro5.server.Daemon(host="yourhostname")
ns = Pyro5.core.locate_ns()
uri = daemon.register(Thing)
ns.register("mythingy", uri)
daemon.requestLoop()

# ------ alternatively, using serve -----
Pyro5.server.serve(
    {
        Thing: "mythingy"
    },
    ns=True, verbose=True, host="yourhostname")





Client code example to connect to this object:

import Pyro5.client
thing = Pyro5.client.Proxy("PYRONAME:mythingy")
print(thing.method(42))   # prints 84








Unregistering objects

When you no longer want to publish an object, you need to unregister it from the daemon (unless it was registered with weak=True when it will be unregistered automatically when garbage-collected):


	
Daemon.unregister(objectOrId)

	
	Parameters:

	objectOrId (object itself or its id string) – the object to unregister











Running the request loop

Once you’ve registered your Pyro object you’ll need to run the daemon’s request loop to make
Pyro wait for incoming requests.


	
Daemon.requestLoop([loopCondition])

	
	Parameters:

	loopCondition – optional callable returning a boolean, if it returns False the request loop will be aborted and the call returns









This is Pyro’s event loop and it will take over your program until it returns (it might never.)
If this is not what you want, you can control it a tiny bit with the loopCondition, or read the next paragraph.



Integrating Pyro in your own event loop

If you want to use a Pyro daemon in your own program that already has an event loop (aka main loop),
you can’t simply call requestLoop because that will block your program.
A daemon provides a few tools to let you integrate it into your own event loop:


	Pyro5.server.Daemon.sockets - list of all socket objects used by the daemon, to inject in your own event loop


	Pyro5.server.Daemon.events() - method to call from your own event loop when Pyro needs to process requests. Argument is a list of sockets that triggered.




For more details and example code, see the
eventloop [https://github.com/irmen/Pyro5/tree/master/examples/eventloop] and
gui_eventloop [https://github.com/irmen/Pyro5/tree/master/examples/gui_eventloop] examples.
They show how to use Pyro including a name server, in your own event loop, and also possible ways
to use Pyro from within a GUI program with its own event loop.



Combining Daemon request loops

In certain situations you will be dealing with more than one daemon at the same time.
For instance, when you want to run your own Daemon together with an ‘embedded’ Name Server Daemon,
or perhaps just another daemon with different settings.

Usually you run the daemon’s Pyro5.server.Daemon.requestLoop() method to handle incoming requests.
But when you have more than one daemon to deal with, you have to run the loops of all of them in parallel somehow.
There are a few ways to do this:


	multithreading: run each daemon inside its own thread


	multiplexing event loop: write a multiplexing event loop and call back into the appropriate
daemon when one of its connections send a request.
You can do this using selectors or select and you can even integrate other (non-Pyro)
file-like selectables into such a loop. Also see the paragraph above.


	use Pyro5.server.Daemon.combine() to combine several daemons into one,
so that you only have to call the requestLoop of that “master daemon”.
Basically Pyro will run an integrated multiplexed event loop for you.
You can combine normal Daemon objects, the NameServerDaemon and also the name server’s BroadcastServer.
Again, have a look at the eventloop example [https://github.com/irmen/Pyro5/tree/master/examples/eventloop] to see how this can be done.
(Note: this will only work with the multiplex server type, not with the thread type)






Cleaning up

To clean up the daemon itself (release its resources) either use the daemon object
as a context manager in a with statement, or manually call Pyro5.server.Daemon.close().

Of course, once the daemon is running, you first need a clean way to stop the request loop before
you can even begin to clean things up.

You can use force and hit ctrl-C or ctrl-or ctrl-Break to abort the request loop, but
this usually doesn’t allow your program to clean up neatly as well.
It is therefore also possible to leave the loop cleanly from within your code (without using sys.exit() or similar).
You’ll have to provide a loopCondition that you set to False in your code when you want
the daemon to stop the loop. You could use some form of semi-global variable for this.
(But if you’re using the threaded server type, you have to also set COMMTIMEOUT because otherwise
the daemon simply keeps blocking inside one of the worker threads).

Another possibility is calling  Pyro5.server.Daemon.shutdown() on the running daemon object.
This will also break out of the request loop and allows your code to neatly clean up after itself,
and will also work on the threaded server type without any other requirements.

If you are using your own event loop mechanism you have to use something else, depending on your own loop.




Controlling Instance modes and Instance creation

While it is possible to register a single singleton object with the daemon,
it is actually preferred that you register a class instead.
When doing that, it is Pyro itself that creates an instance (object) when it needs it.
This allows for more control over when and for how long Pyro creates objects.

Controlling the instance mode and creation is done by decorating your class with Pyro5.server.behavior
and setting its instance_mode or/and instance_creator parameters. It can only be used
on a class definition, because these behavioral settings only make sense at that level.

By default, Pyro will create an instance of your class per session (=proxy connection)
Here is an example of registering a class that will have one new instance for every single method call instead:

import Pyro5.server

@Pyro5.server.behavior(instance_mode="percall")
class MyPyroThing(object):
    @Pyro5.server.expose
    def method(self):
        return "something"

daemon = Pyro5.server.Daemon()
uri = daemon.register(MyPyroThing)
print(uri)
daemon.requestLoop()





There are three possible choices for the instance_mode parameter:


	session: (the default) a new instance is created for every new proxy connection, and is reused for
all the calls during that particular proxy session. Other proxy sessions will deal with a different instance.


	single: a single instance will be created and used for all method calls (for this daemon), regardless what proxy
connection we’re dealing with. This is the same as creating and registering a single object yourself
(the old style of registering code with the deaemon). Be aware that the methods on this object can be called
from separate threads concurrently.


	percall: a new instance is created for every single method call, and discarded afterwards.




Instance creation


Instance creation is lazy

When you register a class in this way, be aware that Pyro only creates an actual
instance of it when it is first needed. If nobody connects to the deamon requesting
the services of this class, no instance is ever created.


Normally Pyro will simply use a default parameterless constructor call to create the instance.
If you need special initialization or the class’s init method requires parameters, you have to specify
an instance_creator callable as well. Pyro will then use that to create an instance of your class.
It will call it with the class to create an instance of as the single parameter.

See the instancemode example [https://github.com/irmen/Pyro5/tree/master/examples/instancemode] to learn about various ways to use this.
See the usersession example [https://github.com/irmen/Pyro5/tree/master/examples/usersession] to learn how you could use it to build user-bound resource access without concurrency problems.



Autoproxying

Pyro will automatically take care of any Pyro objects that you pass around through remote method calls.
It will replace them by a proxy automatically, so the receiving side can call methods on it and be
sure to talk to the remote object instead of a local copy. There is no need to create a proxy object manually.
All you have to do is to register the new object with the appropriate daemon:

def some_pyro_method(self):
    thing=SomethingNew()
    self._pyroDaemon.register(thing)
    return thing    # just return it, no need to return a proxy





There is a autoproxy example [https://github.com/irmen/Pyro5/tree/master/examples/autoproxy] that shows the use of this feature,
and several other examples also make use of it.

Note that when using the marshal serializer, this feature doesn’t work. You have to use
one of the other serializers to use autoproxying.



Server types and Concurrency model

Pyro supports multiple server types (the way the Daemon listens for requests). Select the
desired type by setting the SERVERTYPE config item. It depends very much on what you
are doing in your Pyro objects what server type is most suitable. For instance, if your Pyro
object does a lot of I/O, it may benefit from the parallelism provided by the thread pool server.
However if it is doing a lot of CPU intensive calculations, the multiplexed server may be more
appropriate. If in doubt, go with the default setting.


	
	threaded server (servertype "thread", this is the default)
	This server uses a dynamically adjusted thread pool to handle incoming proxy connections.
If the max size of the thread pool is too small for the number of proxy connections, new proxy connections
will fail with an exception.
The size of the pool is configurable via some config items:



	THREADPOOL_SIZE         this is the maximum number of threads that Pyro will use


	THREADPOOL_SIZE_MIN     this is the minimum number of threads that must remain standby







Every proxy on a client that connects to the daemon will be assigned to a thread to handle
the remote method calls. This way multiple calls can potentially be processed concurrently.
This means your Pyro object may have to be made thread-safe!
If you registered the pyro object’s class with instance mode single, that single instance
will be called concurrently from different threads. If you used instance mode session or percall,
the instance will not be called from different threads because a new one is made per connection or even per call.
But in every case, if you access a shared resource from your Pyro object,
you may need to take thread locking measures such as using Queues.










	
	multiplexed server (servertype "multiplex")
	This server uses a connection multiplexer to process
all remote method calls sequentially. No threads are used in this server.
It uses the best supported selector available on your platform (kqueue, poll, select).
It means only one method call is running at a time, so if it takes a while to complete, all other
calls are waiting for their turn (even when they are from different proxies).
The instance mode used for registering your class, won’t change the way
the concurrent access to the instance is done: in all cases, there is only one call active at all times.
Your objects will never be called concurrently from different threads, because there are no threads.
It does still affect when and how often Pyro creates an instance of your class.










Note

If the ONEWAY_THREADED config item is enabled (it is by default), oneway method calls will
be executed in a separate worker thread, regardless of the server type you’re using.



When to choose which server type?
With the threadpool server at least you have a chance to achieve concurrency, and
you don’t have to worry much about blocking I/O in your remote calls. The usual
trouble with using threads in Python still applies though:
Python threads don’t run concurrently unless they release the GIL.
If they don’t, you will still hang your server process.
For instance if a particular piece of your code doesn’t release the GIL during
a longer computation, the other threads will remain asleep waiting to acquire the GIL. One of these threads may be
the Pyro server loop and then your whole Pyro server will become unresponsive.
Doing I/O usually means the GIL is released.
Some C extension modules also release it when doing their work. So, depending on your situation, not all hope is lost.

With the multiplexed server you don’t have threading problems: everything runs in a single main thread.
This means your requests are processed sequentially, but it’s easier to make the Pyro server
unresponsive. Any operation that uses blocking I/O or a long-running computation will block
all remote calls until it has completed.



Serialization

Pyro will serialize the objects that you pass to the remote methods, so they can be sent across
a network connection. Depending on the serializer that is being used for your Pyro server,
there will be some limitations on what objects you can use, and what serialization format is
required of the clients that connect to your server.

If your server also uses Pyro client code/proxies, you might also need to
select the serializer for these by setting the SERIALIZER config item.

See the Configuring Pyro chapter for details about the config items.
See Serialization for more details about serialization and the new config items.



Other features


Attributes added to Pyro objects

The following attributes will be added to your object if you register it as a Pyro object:


	_pyroId - the unique id of this object (a str)


	_pyroDaemon - a reference to the Pyro5.server.Daemon object that contains this object




Even though they start with an underscore (and are private, in a way),
you can use them as you so desire. As long as you don’t modify them!
The daemon reference for instance is useful to register newly created objects with,
to avoid the need of storing a global daemon object somewhere.

These attributes will be removed again once you unregister the object.



Network adapter binding and localhost

All Pyro daemons bind on localhost by default. This is because of security reasons.
This means only processes on the same machine have access to your Pyro objects.
If you want to make them available for remote machines, you’ll have to tell Pyro on what
network interface address it must bind the daemon.
This also extends to the built in servers such as the name server.


Warning

Read chapter Security before exposing Pyro objects to remote machines!



There are a few ways to tell Pyro what network address it needs to use.
You can set a global config item HOST, or pass a host parameter to the constructor of a Daemon,
or use a command line argument if you’re dealing with the name server.
For more details, refer to the chapters in this manual about the relevant Pyro components.

Pyro provides a couple of utility functions to help you with finding the appropriate IP address
to bind your servers on if you want to make them publicly accessible:


	Pyro5.socketutil.get_ip_address()


	Pyro5.socketutil.get_interface()






Cleaning up / disconnecting stale client connections

A client proxy will keep a connection open even if it is rarely used.
It’s good practice for the clients to take this in consideration and release the proxy.
But the server can’t enforce this, some clients may keep a connection open for a long time.
Unfortunately it’s hard to tell when a client connection has become stale (unused).
Pyro’s default behavior is to accept this fact and not kill the connection.
This does mean however that many stale client connections will eventually block the
server’s resources, for instance all workers threads in the threadpool server.

There’s a simple possible solution to this, which is to specify a communication timeout
on your server. For more information about this, read Release proxies when no longer used. Avoids ‘After X simultaneous proxy connections, Pyro seems to freeze!’.



Daemon Pyro interface

A rather interesting aspect of Pyro’s Daemon is that it (partly) is a Pyro object itself.
This means it exposes a couple of remote methods that you can also invoke yourself if you want.
The object exposed is Pyro5.server.DaemonObject (as you can see it is a bit limited still).

You access this object by creating a proxy for the "Pyro.Daemon" object. That is a reserved
object name. You can use it directly but it is preferable to use the constant
Pyro5.constants.DAEMON_NAME. An example follows that accesses the daemon object from a running name server:

>>> import Pyro5.client
>>> daemon=Pyro5.client.Proxy("PYRO:"+Pyro5.constants.DAEMON_NAME+"@localhost:9090")
>>> daemon.ping()
>>> daemon.registered()
['Pyro.NameServer', 'Pyro.Daemon']







Intercepting errors in user code executed in a method call

When a method call is executed in a Pyro server/daemon, it eventually will execute some
user written code that implements the remote method. This user code may raise an exception
(intentionally or not). Normally, Pyro will only report the exception to the calling client.

It may be useful however to also process the error on the server, for instance, to log the error
somewhere for later reference. For this purpose, you can set the methodcall_error_handler attribute
on the daemon object to a custom error handler function. See the exceptions example [https://github.com/irmen/Pyro5/tree/master/examples/exceptions] .
This function’s signature is:

def custom_error_handler(daemon: Daemon, client_sock: socketutil.SocketConnection,
                         method: Callable, vargs: Sequence[Any], kwargs: Dict[str, Any],
                         exception: Exception) -> None










            

          

      

      

    

  

  
    
    

    Name Server
    

    

    
 
  

    
      
          
            
  
Name Server

The Pyro Name Server is a tool to help keeping track of your objects in your network.
It is also a means to give your Pyro objects logical names instead of the need to always
know the exact object name (or id) and its location.

Pyro will name its objects like this:

PYRO:obj_dcf713ac20ce4fb2a6e72acaeba57dfd@localhost:51850
PYRO:custom_name@localhost:51851





It’s either a generated unique object id on a certain host, or a name you chose yourself.
But to connect to these objects you’ll always need to know the exact object name or id and
the exact hostname and port number of the Pyro daemon where the object is running.
This can get tedious, and if you move servers around (or Pyro objects) your client programs
can no longer connect to them until you update all URIs.

Enter the name server.
This is a simple phone-book like registry that maps logical object names to their corresponding URIs.
No need to remember the exact URI anymore. Instead, you can ask the name server to look it up for
you. You only need to give it the logical object name.


Note

Usually you only need to run one single instance of the name server in your network.
You can start multiple name servers but they are unconnected; you’ll end up with a partitioned name space.



Example scenario:
Assume you’ve got a document archive server that publishes a Pyro object with several archival related methods in it.
This archive server can register this object with the name server, using a logical name such as
“Department.ArchiveServer”. Any client can now connect to it using only the name “Department.ArchiveServer”.
They don’t need to know the exact Pyro id and don’t even need to know the location.
This means you can move the archive server to another machine and as long as it updates its record in the
name server, all clients won’t notice anything and can keep on running without modification.


Starting the Name Server

The easiest way to start a name server is by using the command line tool.

synopsys: python -m Pyro5.nameserver [options] (or simply: pyro5-ns [options])

Starts the Pyro Name Server. It can run without any arguments but there are several that you
can use, for instance to control the hostname and port that the server is listening on.
A short explanation of the available options can be printed with the help option.
When it starts, it prints a message similar to this (‘neptune’ is the hostname of the machine it is running on):

$ pyro5-ns -n neptune
Broadcast server running on 0.0.0.0:9091
NS running on neptune:9090 (192.168.178.20)
URI = PYRO:Pyro.NameServer@neptune:9090





As you can see it prints that it started a broadcast server (and its location),
a name server (and its location), and it also printed the URI that clients can use
to access it directly.

The nameserver uses a fast but volatile in-memory database by default. With a command line argument
you can select a persistent storage mechanism (see below). If you’re using that, your registrations
will not be lost when the nameserver stops/restarts. The server will print the number of
existing registrations at startup time if it discovers any.


Note

Pyro by default binds its servers on localhost which means you cannot reach them
from another machine on the network. This behavior also applies to the name server.
If you want to be able to talk to the name server from other machines, you have to
explicitly provide a hostname or non-loopback interface to bind on.



There are several command line options for this tool:


	
-h, --help

	Print a short help message and exit.






	
-n HOST, --host=HOST

	Specify hostname or ip address to bind the server on.
The default is localhost, note that your name server will then not be visible from the network
If the server binds on localhost, no broadcast responder is started either.
Make sure to provide a hostname or ip address to make the name server reachable from other machines, if you want that.






	
-p PORT, --port=PORT

	Specify port to bind server on (0=random).






	
-u UNIXSOCKET, --unixsocket=UNIXSOCKET

	Specify a Unix domain socket name to bind server on, rather than a normal TCP/IP socket.






	
--bchost=BCHOST

	Specify the hostname or ip address to bind the broadcast responder on.
Note: if the hostname where the name server binds on is localhost (or 127.0.x.x),
no broadcast responder is started.






	
--bcport=BCPORT

	Specify the port to bind the broadcast responder on (0=random).






	
--nathost=NATHOST

	Specify the external host name to use in case of NAT






	
--natport=NATPORT

	Specify the external port use in case of NAT






	
-s STORAGE, --storage=STORAGE

	Specify the storage mechanism to use. You have several options:



	memory - fast, volatile in-memory database. This is the default.


	dbm:dbfile - dbm-style persistent database table. Provide the filename to use. This storage type does not support metadata.


	sql:sqlfile - sqlite persistent database. Provide the filename to use.












	
-x, --nobc

	Don’t start a broadcast responder. Clients will not be able to use the UDP-broadcast lookup
to discover this name server.
(The broadcast responder listens to UDP broadcast packets on the local network subnet,
to signal its location to clients that want to talk to the name server)







Starting the Name Server from within your own code

Another way to start up a name server is by doing it from within your own code.
This is more complex than simply launching it via the command line tool,
because you have to integrate the name server into the rest of your program (perhaps you need to merge event loops?).
For your convenience, two helper functions are available to create a name server yourself:
Pyro5.nameserver.start_ns() and Pyro5.nameserver.start_ns_loop().
Look at the eventloop example [https://github.com/irmen/Pyro5/tree/master/examples/eventloop] to see how you can use this.

Custom storage mechanism:
The utility functions allow you to specify a custom storage mechanism (via the storage parameter).
By default the in memory storage Pyro5.nameserver.MemoryStorage is used.
In the Pyro5.nameserver module you can find the other implementation (sqlite).
You could also build your own, as long as it has the same interface.



Configuration items

There are a couple of config items related to the nameserver.
They are used both by the name server itself (to configure the values it will use to start
the server with), and the client code that locates the name server (to give it optional hints where
the name server is located). Often these can be overridden with a command line option or with a method parameter in your code.



	Configuration item

	description





	HOST

	hostname that the name server will bind on (being a regular Pyro daemon).



	NS_HOST

	the hostname or ip address of the name server. Used for locating in clients only.



	NS_PORT

	the port number of the name server. Used by the server and for locating in clients.



	NS_BCHOST

	the hostname or ip address of the name server’s broadcast responder. Used only by the server.



	NS_BCPORT

	the port number of the name server’s broadcast responder. Used by the server and for locating in clients.



	NATHOST

	the external hostname in case of NAT. Used only by the server.



	NATPORT

	the external port in case of NAT. Used only by the server.



	NS_AUTOCLEAN

	a recurring period in seconds where the Name server checks its registrations, and removes the ones that are no longer available. Defaults to 0.0 (off).








Name server control tool

The name server control tool (or ‘nsc’) is used to talk to a running name server and perform
diagnostic or maintenance actions such as querying the registered objects, adding or removing
a name registration manually, etc.

synopsis: python -m Pyro5.nsc [options] command [arguments] (or simply: pyro5-nsc [options] command [arguments])


	
-h, --help

	Print a short help message and exit.






	
-n HOST, --host=HOST

	Provide the hostname or ip address of the name server.
The default is to do a broadcast lookup to search for a name server.






	
-p PORT, --port=PORT

	Provide the port of the name server, or its broadcast port if you’re doing a broadcast lookup.






	
-u UNIXSOCKET, --unixsocket=UNIXSOCKET

	Provide the Unix domain socket name of the name server, rather than a normal TCP/IP socket.






	
-v, --verbose

	Print more output that could be useful.





The available commands for this tool are:


	listlist [prefix]
	List all objects with their metadata registered in the name server. If you supply a prefix,
the list will be filtered to show only the objects whose name starts with the prefix.



	listmatchinglistmatching pattern
	List only the objects with a name matching the given regular expression pattern.



	lookuplookup name
	Looks up a single name registration and prints the uri.



	yplookup_allyplookup_all metadata [metadata…]
	List the objects having all of the given metadata tags



	yplookup_anyyplookup_any metadata [metadata…]
	List the objects having any one (or multiple) of the given metadata tags



	registerregister name uri
	Registers a name to the given Pyro object URI.



	removeremove name
	Removes the entry with the exact given name from the name server.



	removematchingremovematching pattern
	Removes all entries matching the given regular expression pattern.



	setmetasetmeta name [metadata…]
	Sets the new list of metadata tags for the given Pyro object.
If you don’t specify any metadata tags, the metadata of the object is cleared.



	ping
	Does nothing besides checking if the name server is running and reachable.





Example:

$ pyro5-nsc ping
Name server ping ok.

$ pyro5-nsc list Pyro
--------START LIST - prefix 'Pyro'
Pyro.NameServer --> PYRO:Pyro.NameServer@localhost:9090
    metadata: {'class:Pyro5.nameserver.NameServer'}
--------END LIST - prefix 'Pyro'







Locating the Name Server and using it in your code

The name server is a Pyro object itself, and you access it through a normal Pyro proxy.
The object exposed is Pyro5.nameserver.NameServer.
Getting a proxy for the name server is done using the following function:
Pyro5.core.locate_ns() (also available as Pyro5.api.locate_ns()).

By far the easiest way to locate the Pyro name server is by using the broadcast lookup mechanism.
This goes like this: you simply ask Pyro to look up the name server and return a proxy for it.
It automatically figures out where in your subnet it is running by doing a broadcast and returning
the first Pyro name server that responds. The broadcast is a simple UDP-network broadcast, so this
means it usually won’t travel outside your network subnet (or through routers) and your firewall
needs to allow UDP network traffic.

There is a config item BROADCAST_ADDRS that contains a comma separated list of the broadcast
addresses Pyro should use when doing a broadcast lookup. Depending on your network configuration,
you may have to change this list to make the lookup work. It could be that you have to add the
network broadcast address for the specific network that the name server is located on.


Note

You can only talk to a name server on a different machine if it didn’t bind on localhost (that
means you have to start it with an explicit host to bind on). The broadcast lookup mechanism
only works in this case as well – it doesn’t work with a name server that binds on localhost.
For instance, the name server started as an example in Starting the Name Server was told to
bind on the host name ‘neptune’ and it started a broadcast responder as well.
If you use the default host (localhost) a broadcast responder will not be created.



Normally, all name server lookups are done this way. In code, it is simply calling the
locator function without any arguments.
If you want to circumvent the broadcast lookup (because you know the location of the
server already, somehow) you can specify the hostname.
As soon as you provide a specific hostname to the name server locator (by using a host argument
to the locate_ns call, or by setting the NS_HOST config item, etc) it will no longer use
a broadcast too try to find the name server.


	
locate_ns([host=None, port=None, broadcast=True])

	Get a proxy for a name server somewhere in the network.
If you’re not providing host or port arguments, the configured defaults are used.
Unless you specify a host, a broadcast lookup is done to search for a name server.
(api reference: Pyro5.core.locate_ns())


	Parameters:

	
	host – the hostname or ip address where the name server is running.
Default is None which means it uses a network broadcast lookup.
If you specify a host, no broadcast lookup is performed.


	port – the port number on which the name server is running.
Default is None which means use the configured default.
The exact meaning depends on whether the host parameter is given:


	host parameter given: the port now means the actual name server port.


	host parameter not given: the port now means the broadcast port.







	broadcast – should a broadcast be used to locate the name server, if
no location is specified? Default is True.














The PYRONAME protocol type

To create a proxy and connect to a Pyro object, Pyro needs an URI so it can find the object.
Because it is so convenient, the name server logic has been integrated into Pyro’s URI mechanism
by means of the special PYRONAME protocol type (rather than the normal PYRO protocol type).
This protocol type tells Pyro to treat the URI as a logical object name instead, and Pyro will
do a name server lookup automatically to get the actual object’s URI. The form of a PYRONAME uri
is very simple:

PYRONAME:some_logical_object_name
PYRONAME:some_logical_object_name@nshostname           # with optional host name
PYRONAME:some_logical_object_name@nshostname:nsport    # with optional host name + port





where “some_logical_object_name” is the name of a registered Pyro object in the name server.
When you also provide the nshostname and perhaps even nsport parts in the uri, you tell Pyro to look
for the name server on that specific location (instead of relying on a broadcast lookup mechanism).
(You can achieve more or less the same by setting the NS_HOST and NS_PORT config items)

All this means that instead of manually resolving objects like this:

nameserver=Pyro5.core.locate_ns()
uri=nameserver.lookup("Department.BackupServer")
proxy=Pyro5.client.Proxy(uri)
proxy.backup()





you can write this instead:

proxy=Pyro5.client.Proxy("PYRONAME:Department.BackupServer")
proxy.backup()





An additional benefit of using a PYRONAME uri in a proxy is that the proxy isn’t strictly
tied to a specific object on a specific location. This is useful in scenarios where the server
objects might move to another location, for instance when a disconnect/reconnect occurs.
See the autoreconnect example [https://github.com/irmen/Pyro5/tree/master/examples/autoreconnect] for more details about this.


Note

Pyro has to do a lookup every time it needs to connect one of these PYRONAME uris.
If you connect/disconnect many times or with many different objects,
consider using PYRO uris (you can type them directly or create them by resolving as explained in the
following paragraph) or call Pyro5.core.Proxy._pyroBind() on the proxy to
bind it to a fixed PYRO uri instead.





The PYROMETA protocol type

Next to the PYRONAME protocol type there is another ‘magic’ protocol PYROMETA.
This protocol type tells Pyro to treat the URI as metadata tags, and Pyro will
ask the name server for any (randomly chosen) object that has the given metadata tags.
The form of a PYROMETA uri is:

PYROMETA:metatag
PYROMETA:metatag1,metatag2,metatag3
PYROMETA:metatag@nshostname           # with optional host name
PYROMETA:metatag@nshostname:nsport    # with optional host name + port





So you can write this to connect to any random printer (given that all Pyro objects representing a printer
have been registered in the name server with the resource.printer metadata tag):

proxy=Pyro5.client.Proxy("PYROMETA:resource.printer")
proxy.printstuff()





You have to explicitly add metadata tags when registering objects with the name server, see Yellow-pages ability of the Name Server (metadata tags).
Objects without metadata tags cannot be found via PYROMETA obviously.
Note that the name server supports more advanced metadata features than what PYROMETA provides:
in a PYROMETA uri you cannot use white spaces, and you cannot ask for an object that has one or more
of the given tags – multiple tags means that the object must have all of them.

Metadata tags can be listed if you query the name server for registrations.



Resolving object names

‘Resolving an object name’ means to look it up in the name server’s registry and getting
the actual URI that belongs to it (with the actual object name or id and the location of
the daemon in which it is running). This is not normally needed in user code (Pyro takes
care of it automatically for you), but it can still be useful in certain situations.

So, resolving a logical name can be done in several ways:


	The easiest way: let Pyro do it for you! Simply pass a PYRONAME URI to the proxy constructor,
and forget all about the resolving happening under the hood:

obj = Pyro5.client.Proxy("PYRONAME:objectname")
obj.method()







	obtain a name server proxy and use its lookup method (Pyro5.nameserver.NameServer.lookup()).
You could then use this resolved uri to get an actual proxy, or do other things with it:

ns = Pyro5.core.locate_ns()
uri = ns.lookup("objectname")
# uri now is the resolved 'objectname'
obj = Pyro5.client.Proxy(uri)
obj.method()







	use a PYRONAME URI and resolve it using the resolve utility function Pyro5.core.resolve() (also available as Pyro5.api.resolve()):

uri = Pyro5.core.resolve("PYRONAME:objectname")
# uri now is the resolved 'objectname'
obj = Pyro5.client.Proxy(uri)
obj.method()







	use a PYROMETA URI and resolve it using the resolve utility function Pyro5.core.resolve() (also available as Pyro5.api.resolve()):

uri = Pyro5.core.resolve("PYROMETA:metatag1,metatag2")
# uri is now randomly chosen from all objects having the given meta tags
obj = Pyro5.client.Proxy(uri)











Registering object names

‘Registering an object’ means that you associate the URI with a logical name, so that
clients can refer to your Pyro object by using that name.
Your server has to register its Pyro objects with the name server. It first registers an
object with the Daemon, gets an URI back, and then registers that URI in the name server using
the following method on the name server proxy:


	
register(name, uri, safe=False)

	Registers an object (uri) under a logical name in the name server.


	Parameters:

	
	name (string) – logical name that the object will be known as


	uri (string or Pyro5.core.URI) – the URI of the object (you get it from the daemon)


	safe (bool) – normally registering the same name twice silently overwrites the old registration. If you set safe=True, the same name cannot be registered twice.












You can unregister objects as well using the unregister() method.
The name server also supports automatically checking for registrations that are no longer available,
for instance because the server process crashed or a network problem occurs. It will then automatically
remove those registrations after a certain timeout period.
This feature is disabled by default (it potentially requires the NS to periodically create a lot of
network connections to check for each of the registrations if it is still available). You can enable it
by setting the NS_AUTOCLEAN config item to a non zero value; it then specifies the recurring period
in seconds for the nameserver to check all its registrations. Choose an appropriately large value, the minimum
allowed is 3.



Free connections to the NS quickly

By default the Name server uses a Pyro socket server based on whatever configuration is the default.
Usually that will be a threadpool based server with a limited pool size. If more clients connect to
the name server than the pool size allows, they will get a connection error.

It is suggested you apply the following pattern when using the name server in your code:


	obtain a proxy for the NS


	look up the stuff you need, store it


	free the NS proxy (See Proxies, connections, threads and cleaning up)


	use the uri’s/proxies you’ve just looked up




This makes sure your client code doesn’t consume resources in the name server for an excessive amount of time,
and more importantly, frees up the limited connection pool to let other clients get their turn.
If you have a proxy to the name server and you let it live for too long, it may eventually deny
other clients access to the name server because its connection pool is exhausted. So if you don’t need
the proxy anymore, make sure to free it up.

There are a number of things you can do to improve the matter on the side of the Name Server itself.
You can control its behavior by setting certain Pyro config items before starting the server:


	You can set SERVERTYPE=multiplex to create a server that doesn’t use a limited connection (thread) pool,
but multiplexes as many connections as the system allows. However, the actual calls to the server must
now wait on eachother to complete before the next call is processed. This may impact performance in other ways.


	You can set THREADPOOL_SIZE to an even larger number than the default.


	You can set COMMTIMEOUT to a certain value, which frees up unused connections after the given time.
But the client code may now crash with a TimeoutError or ConnectionClosedError when it tries to use a
proxy it obtained earlier. (You can use Pyro’s autoreconnect feature to work around this but it makes
the code more complex)






Yellow-pages ability of the Name Server (metadata tags)

You can tag object registrations in the name server with one or more Metadata tags.
These are simple strings but you’re free to put anything you want in it. One way of using it, is to provide
a form of Yellow-pages object lookup: instead of directly asking for the registered object by its unique name
(telephone book), you’re asking for any registration from a certain category. You get back a list of
registered objects from the queried category, from which you can then choose the one you want.


Note

Metadata tags are case-sensitive.



As an example, imagine the following objects registered in the name server (with the metadata as shown):



	Name

	Uri

	Metadata





	printer.secondfloor

	PYRO:printer1@host:1234

	printer



	printer.hallway

	PYRO:printer2@host:1234

	printer



	storage.diskcluster

	PYRO:disks1@host:1234

	storage



	storage.ssdcluster

	PYRO:disks2@host:1234

	storage






Instead of having to know the exact name of a required object you can query the name server for
all objects having a certain set of metadata.
So in the above case, your client code doesn’t have to ‘know’ that it needs to lookup the printer.hallway
object to get the uri of a printer (in this case the one down in the hallway).
Instead it can just ask for a list of all objects having the printer metadata tag.
It will get a list containing both printer.secondfloor and printer.hallway so you will still
have to choose the object you want to use - or perhaps even use both.
The objects tagged with storage won’t be returned.

Arguably the most useful way to deal with the metadata is to use it for Yellow-pages style lookups.
You can ask for all objects having some set of metadata tags, where you can choose if
they should have all of the given tags or only any one (or more) of the given tags. Additional or
other filtering must be done in the client code itself.
So in the above example, querying with meta_any={'printer', 'storage'} will return all four
objects, while querying with meta_all={'printer', 'storage'} will return an empty list (because
there are no objects that are both a printer and storage).

Setting metadata in the name server

Object registrations in the name server by default have an empty set of metadata tags associated with them.
However the register method (Pyro5.nameserver.NameServer.register()) has an optional metadata argument,
you can set that to a set of strings that will be the metadata tags associated with the object registration.
For instance:

ns.register("printer.secondfloor", "PYRO:printer1@host:1234", metadata={"printer"})





Getting metadata back from the name server

The lookup (Pyro5.nameserver.NameServer.lookup()) and list (Pyro5.nameserver.NameServer.list()) methods
of the name server have an optional return_metadata argument.
By default it is False, and you just get back the registered URI (lookup) or a dictionary with the registered
names and their URI as values (list). If you set it to True however, you’ll get back tuples instead:
(uri, set-of-metadata-tags):

ns.lookup("printer.secondfloor", return_metadata=True)
# returns: (<Pyro5.core.URI at 0x6211e0, PYRO:printer1@host:1234>, {'printer'})

ns.list(return_metadata=True)
# returns something like:
#   {'printer.secondfloor': ('PYRO:printer1@host:1234', {'printer'}),
#    'Pyro.NameServer': ('PYRO:Pyro.NameServer@localhost:9090', {'class:Pyro5.nameserver.NameServer'})}
# (as you can see the name server itself has also been registered with a metadata tag)





Querying on metadata (Yellow-page lookup)

You can ask the name server to list all objects having some set of metadata tags.
The yplookup (Pyro5.nameserver.NameServer.yplookup()) method of the name server has two arguments
to allow you do do this: meta_all and meta_any.


	meta_all: give all objects having all of the given metadata tags:

ns.yplookup(meta_all={"printer"})
# returns: {'printer.secondfloor': 'PYRO:printer1@host:1234'}
ns.yplookup(meta_all={"printer", "communication"})
# returns: {}   (there is no object that's both a printer and a communication device)







	meta_any: give all objects having one (or more) of the given metadata tags:

ns.yplookup(meta_any={"storage", "printer", "communication"})
# returns: {'printer.secondfloor': 'PYRO:printer1@host:1234'}









Querying on metadata via ``PYROMETA`` uri (Yellow-page lookup in uri)

As a convenience, similar to the PYRONAME uri protocol, you can use the PYROMETA uri protocol
to let Pyro do the lookup for you. It only supports meta_all lookup, but it allows you to
conveniently get a proxy like this:

Pyro5.client.Proxy("PYROMETA:resource.printer,performance.fast")





this will connect to a (randomly chosen) object with both the resource.printer and performance.fast metadata tags.
Also see The PYROMETA protocol type.

You can find some code that uses the metadata API in the ns-metadata example [https://github.com/irmen/Pyro5/tree/master/examples/ns-metadata] .
Note that the nsc tool (Name server control tool) also allows you to manipulate the metadata in the name server from the command line.



Other methods in the Name Server API

The name server has a few other methods that might be useful at times.
For instance, you can ask it for a list of all registered objects.
Because the name server itself is a regular Pyro object, you can access its methods
through a regular Pyro proxy, and refer to the description of the exposed class to
see what methods are available: Pyro5.nameserver.NameServer.





            

          

      

      

    

  

  
    
    

    Security
    

    

    
 
  

    
      
          
            
  
Security


Warning

Do not publish any Pyro objects to remote machines unless you’ve read and understood everything
that is discussed in this chapter. This is also true when publishing Pyro objects with different
credentials to other processes on the same machine.
Why? In short: using Pyro has several security risks. Pyro has a few countermeasures to deal with them.
Understanding the risks, the countermeasures, and their limits, is very important to avoid
creating systems that are very easy to compromise by malicious entities.




Network interface binding

By default Pyro binds every server on localhost, to avoid exposing things on a public network or over the internet by mistake.
If you want to expose your Pyro objects to anything other than localhost, you have to explicitly tell Pyro the
network interface address it should use. This means it is a conscious effort to expose Pyro objects to other machines.

It is possible to tell Pyro the interface address via an environment variable or global config item (HOST).
In some situations - or if you’re paranoid - it is advisable to override this setting in your server program
by setting the config item from within your own code, instead of depending on an externally configured setting.



Running Pyro servers with different credentials/user id

The following is not a Pyro specific problem, but is important nonetheless:
If you want to run your Pyro server as a different user id or with different credentials as regular users,
be very careful what kind of Pyro objects you expose like this!

Treat this situation as if you’re exposing your server on the internet (even when it’s only running on localhost).
Keep in mind that it is still possible that a random user on the same machine connects to the local server.
You may need additional security measures to prevent random users from calling your Pyro objects.



Secure communication via SSL/TLS

Pyro itself doesn’t encrypt the data it sends over the network. This means if you use the default
configuration, you must never transfer sensitive data on untrusted networks
(especially user data, passwords, and such) because eavesdropping is possible.

You can run Pyro over a secure network (VPN, ssl/ssh tunnel) where the encryption
is taken care of externally. It is also possible however to enable SSL/TLS in Pyro itself,
so that all communication is secured via this industry standard that
provides encryption, authentication, and anti-tampering (message integrity).

Using SSL/TLS

Enable it by setting the SSL config item to True, and configure the other SSL config items
as required. You’ll need to specify the cert files to use, private keys, and passwords if any.
By default, the SSL mode only has a cert on the server (which is similar to visiting a https url
in your browser). This means your clients can be sure that they are connecting to the expected
server, but the server has no way to know what clients are connecting.
You can solve this using SSL and custom certificate verification.
You can do this in your client (checks the server’s cert) but you can also tell your clients
to use certs as well and check these in your server. This makes it 2-way-SSL or mutual authentication.
For more details see here …by using 2-way-SSL and certificate verificiation. The SSL config items are in Overview of Config Items.

For example code on how to set up a 2-way-SSL Pyro client and server, with cert verification,
see the ssl example [https://github.com/irmen/Pyro5/tree/master/examples/ssl] .



Dotted names (object traversal)

Using “dotted names” to traverse attributes on Pyro proxies (like proxy.aaa.bbb.ccc())
is not possible. because that is a security vulnerability
(for similar reasons as described here https://legacy.python.org/news/security/PSF-2005-001/ ).

If you require access to a nested attribute, you’ll have to explicitly add a method or attribute
on the proxy itself to access it directly.



Environment variables overriding config items

Almost all config items can be overwritten by an environment variable.
If you can’t trust the environment in which your script is running, it may be a good idea
to reset the config items to their default builtin values, without using any environment variables.
See Configuring Pyro for the proper way to do this.



Preventing arbitrary connections


…by using 2-way-SSL and certificate verificiation

When using SSL, you should also do some custom certificate verification, such as checking the serial number
and commonName. This way your code is not only certain that the communication is encrypted, but also
that it is talking to the intended party and nobody else (middleman).
The server hostname and cert expiration dates are checked automatically, but
other attributes you have to verify yourself.

This is fairly easy to do: you can use Connection handshake for this. You can then get the peer certificate
using Pyro5.socketutil.SocketConnection.getpeercert().

If you configure a client cert as well as a server cert, you can/should also do verification of
client certificates in your server. This is a good way to be absolutely certain that you only
allow clients that you know and trust, because you can check the required unique certificate attributes.

Having certs on both client and server is called 2-way-SSL or mutual authentication.

It’s a bit too involved to fully describe here but it not much harder than the basic SSL configuration
described earlier. You just have to make sure you supply a client certificate and that the server requires
a client certificate (and verifies some properties of it).
The ssl example [https://github.com/irmen/Pyro5/tree/master/examples/ssl] shows how to do all this.






            

          

      

      

    

  

  
    
    

    Exceptions and remote tracebacks
    

    

    
 
  

    
      
          
            
  
Exceptions and remote tracebacks

There is an example that shows various ways to deal with exceptions when writing Pyro code.
Have a look at the exceptions example [https://github.com/irmen/Pyro5/tree/master/examples/exceptions] .


Pyro exceptions

Pyro’s exception classes can be found in Pyro5.errors.
They are used by Pyro itself if something went wrong inside Pyro itself or related to something Pyro was doing.
All errors are of type PyroError or a subclass thereof.



Remote exceptions

More interesting are how Pyro treats exeptions that occur in your own objects (the remote Pyro objects):
it is making the remote objects appear as normal, local, Python objects.
That also means that if they raise an error, Pyro will make it appear in the caller (client progam),
as if the error occurred locally at the point of the call.

Assume you have a remote object that can divide arbitrary numbers.
It will raise a ZeroDivisionError when using 0 as the divisor.
This can be dealt with by just catching the exception as if you were writing regular code:

import Pyro5.api

divider=Pyro5.api.Proxy( ... )
try:
    result = divider.div(999,0)
except ZeroDivisionError:
    print("yup, it crashed")





Since the error occurred in a remote object, and Pyro itself raises it again on the client
side, some information is initially lost: the actual traceback of the crash itself in the server code.
Pyro stores the traceback information on a special attribute on the exception
object (_pyroTraceback), as a list of strings (each is a line from
the traceback text, including newlines). You can use this data on the client to print or process the
traceback text from the exception as it occurred in the Pyro object on the server.

There is a utility function in Pyro5.errors to make it easy to deal with this:
Pyro5.errors.get_pyro_traceback()

You use it like this:

import Pyro5.errors
try:
    result = proxy.method()
except Exception:
    print("Pyro traceback:")
    print("".join(Pyro5.errors.get_pyro_traceback()))





Also, there is another function that you can install in sys.excepthook, if you want Python
to automatically print the complete Pyro traceback including the remote traceback, if any:
Pyro5.errors.excepthook()

A full Pyro exception traceback, including the remote traceback on the server, looks something like this:

Traceback (most recent call last):
  File "client.py", line 54, in <module>
    print(test.complexerror())  # due to the excepthook, the exception will show the pyro error
  File "/home/irmen/Projects/pyro5/Pyro5/client.py", line 476, in __call__
    return self.__send(self.__name, args, kwargs)
  File "/home/irmen/Projects/pyro5/Pyro5/client.py", line 243, in _pyroInvoke
    raise data  # if you see this in your traceback, you should probably inspect the remote traceback as well
TypeError: unsupported operand type(s) for //: 'str' and 'int'
 +--- This exception occured remotely (Pyro) - Remote traceback:
 | Traceback (most recent call last):
 |   File "/home/irmen/Projects/pyro5/Pyro5/server.py", line 466, in handleRequest
 |     data = method(*vargs, **kwargs)  # this is the actual method call to the Pyro object
 |   File "/home/irmen/Projects/pyro5/examples/exceptions/excep.py", line 24, in complexerror
 |     x.crash()
 |   File "/home/irmen/Projects/pyro5/examples/exceptions/excep.py", line 32, in crash
 |     self.crash2('going down...')
 |   File "/home/irmen/Projects/pyro5/examples/exceptions/excep.py", line 36, in crash2
 |     x = arg // 2
 | TypeError: unsupported operand type(s) for //: 'str' and 'int'
 +--- End of remote traceback





As you can see, the first part is only the exception as it occurs locally on the client (raised
by Pyro). The indented part marked with ‘Remote traceback’ is the exception as it occurred
in the remote Pyro object.



Detailed traceback information

There is another utility that Pyro has to make it easier to debug remote object exceptions.
If you enable the DETAILED_TRACEBACK config item on the server (see Overview of Config Items), the remote
traceback is extended with details of the values of the local variables in every frame:

+--- This exception occured remotely (Pyro) - Remote traceback:
| ----------------------------------------------------
|  EXCEPTION <class 'TypeError'>: unsupported operand type(s) for //: 'str' and 'int'
|  Extended stacktrace follows (most recent call last)
| ----------------------------------------------------
| File "/home/irmen/Projects/pyro5/Pyro5/server.py", line 466, in Daemon.handleRequest
| Source code:
|     data = method(*vargs, **kwargs)  # this is the actual method call to the Pyro object
| ----------------------------------------------------
| File "/home/irmen/Projects/pyro5/examples/exceptions/excep.py", line 24, in TestClass.complexerror
| Source code:
|     x.crash()
| Local values:
|     self = <excep.TestClass object at 0x7f8dec533b20>
|     x = <excep.Foo object at 0x7f8dec550f40>
| ----------------------------------------------------
| File "/home/irmen/Projects/pyro5/examples/exceptions/excep.py", line 32, in Foo.crash
| Source code:
|     self.crash2('going down...')
| Local values:
|     self = <excep.Foo object at 0x7f8dec550f40>
| ----------------------------------------------------
| File "/home/irmen/Projects/pyro5/examples/exceptions/excep.py", line 36, in Foo.crash2
| Source code:
|     x = arg // 2
| Local values:
|     arg = 'going down...'
|     self = <excep.Foo object at 0x7f8dec550f40>
| ----------------------------------------------------
|  EXCEPTION <class 'TypeError'>: unsupported operand type(s) for //: 'str' and 'int'
| ----------------------------------------------------
+--- End of remote traceback





You can immediately see why the call produced a TypeError without the need to have a debugger running
(the arg variable is a string and dividing that string by 2 is the cause of the error).





            

          

      

      

    

  

  
    
    

    Tips & Tricks
    

    

    
 
  

    
      
          
            
  
Tips & Tricks


Best practices


Make as little as possible remotely accessible.

Try to avoid simply sticking an @expose on the whole class. Instead only mark the methods that you really
want to be remotely accessible. Alternatively, make sure the exposed class only consists of methods
that are okay to be accessed remotely.



Avoid circular communication topologies.

When you can have a circular communication pattern in your system (A–>B–>C–>A) this has the potential to deadlock.
You should try to avoid circularity.
Possible ways to break a cycle are to use a oneway call somewhere in the chain or set an COMMTIMEOUT
so that after a certain period in a locking situation the caller aborts with a TimeoutError, effectively breaking the deadlock.



Release proxies when no longer used. Avoids ‘After X simultaneous proxy connections, Pyro seems to freeze!’

A connected proxy that is unused takes up resources on the server. In the case of the threadpool server type,
it locks to a single thread. If you have too many connected proxies at the same time, the server runs out
of threads and can’t accept new connections.

You can use the THREADPOOL_SIZE config item to increase the maximum number of threads that Pyro will use.
Or use the multiplex server instead, which doesn’t have this limitation.

To free resources in a timely manner, close (release) proxies that your program no longer needs.
Pyro wil auto-reconnect a proxy when it is used again later.
The easiest way is to use a proxy as a context manager. You can also use an explicit _pyroRelease call on the proxy.
Releasing and then reconnecting a proxy is very costly so make sure you’re not doing this too often.



Avoid large binary blobs over the wire.

Pyro is not designed to efficiently transfer large amounts of binary data over the network.
Try to find another protocol that better suits this requirement if you do this regularly.

There are a few tricks to speed up transfer of large blocks of data using Pyro,
read Binary data transfer / file transfer for details about that.



Minimize object structures that travel over the wire.

Pyro serializes the whole object structure you’re passing, even when only a fraction
of it is used on the receiving end. It may be necessary to define special lightweight objects
for your Pyro interfaces that hold just the data you need, rather than passing a huge object structure.
It’s good design practice anyway to have an “external API” that is different from your internal code,
and tuned for minimal communication overhead or complexity.

This also ties in with just exposing the methods of your server object that should be remotely
accessible, and using primitive types in the interfaces as much as possible to avoid serialization problems.



Consider using basic data types instead of custom classes.

Because Pyro serializes the objects you’re passing, it needs to know how to serialize custom types.
While you can teach Pyro about these (see Customizing serialization) it may sometimes be easier to just use a builtin datatype instead.
For instance if you have a custom class whose state essentially is a set of numbers, consider then
that it may be easier to just transfer a set or a list of those numbers rather than an instance of your
custom class.  It depends on your class and data of course, and whether the receiving code expects
just the list of numbers or really needs an instance of your custom class.




Logging

If you configure it (see Overview of Config Items) Pyro will write a bit of debug information, errors, and notifications to a log file.
It uses Python’s standard logging module for this.
Once enabled, your own program code could use Pyro’s logging setup as well.
But if you want to configure your own logging, you have to do this before importing Pyro.

A little example to enable logging by setting the required environment variables from the shell:

$ export PYRO_LOGFILE=pyro.log
$ export PYRO_LOGLEVEL=DEBUG
$ python my_pyro_program.py





Another way is by modifiying os.environ from within your code itself, before any import of Pyro is done:

import os
os.environ["PYRO_LOGFILE"] = "pyro.log"
os.environ["PYRO_LOGLEVEL"] = "DEBUG"

import Pyro5.api
# do stuff...





Finally, it is possible to initialize the logging by means of the standard Python logging module only, but
then you still have to tell Pyro what log level it should use (or it won’t log anything):

import logging
logging.basicConfig()  # or your own sophisticated setup
logging.getLogger("Pyro5").setLevel(logging.DEBUG)
logging.getLogger("Pyro5.core").setLevel(logging.DEBUG)
# ... set level of other logger names as desired ...

import Pyro5.api
# do stuff...





The various logger names are similar to the module that uses the logger,
so for instance logging done by code in Pyro5.core will use a logger category name of Pyro5.core.
Look at the top of the source code of the various modules from Pyro to see what the exact names are.



Multiple network interfaces

This is a difficult subject but here are a few short notes about it.
At this time, Pyro doesn’t support running on multiple network interfaces at the same time.
You can bind a deamon on INADDR_ANY (0.0.0.0) though, including the name server.
But weird things happen with the URIs of objects published through these servers, because they
will point to 0.0.0.0 and your clients won’t be able to connect to the actual objects.

The name server however contains a little trick. The broadcast responder can also be bound on 0.0.0.0
and it will in fact try to determine the correct ip address of the interface that a client needs to use
to contact the name server on. So while you cannot run Pyro daemons on 0.0.0.0 (to respond to requests
from all possible interfaces), sometimes it is possible to run only the name server on 0.0.0.0.
Success of this depends on your particular network setup.



Wire protocol version

Here is a little tip to find out what wire protocol version a given Pyro server is using.
This could be useful if you are getting ProtocolError about invliad protocol version.

Server

This is a way to figure out the protocol version number a given Pyro server is using:
by reading the first 6 bytes from the server socket connection.
The Pyro daemon will respond with a 4-byte string “PYRO” followed by a 2-byte number
that is the protocol version used:

$ nc <pyroservername> <pyroserverport> </dev/zero | od -N 6 -t x1c
0000000  50  59  52  4f  01  f6
          P   Y   R   O 001 366





This one is talking protocol version 01 f6 (502).

Client

To find out the protocol version that your client code is using, you can use this:

$ python -c "import Pyro5.protocol as p; print(p.PROTOCOL_VERSION)"







Pyro behind a NAT router/firewall

You can run Pyro behind a NAT router/firewall.
Assume the external hostname is ‘pyro.server.com’ and the external port is 5555.
Also assume the internal host is ‘server1.lan’ and the internal port is 9999.
You’ll need to have a NAT rule that maps pyro.server.com:5555 to server1.lan:9999.
You’ll need to start your Pyro daemon, where you specify the nathost and natport arguments,
so that Pyro knows it needs to ‘publish’ URIs containing that external location instead of just
using the internal addresses:

# running on server1.lan
d = Pyro5.api.Daemon(port=9999, nathost="pyro.server.com", natport=5555)
uri = d.register(Something, "thing")
print(uri)     # "PYRO:thing@pyro.server.com:5555"





As you see, the URI now contains the external address.

Pyro5.server.Daemon.uriFor() by default returns URIs with a NAT address in it (if nathost
and natport were used). You can override this by setting nat=False:

# d = Pyro5.api.Daemon(...)
print(d.uriFor("thing"))                # "PYRO:thing@pyro.server.com:5555"
print(d.uriFor("thing", nat=False))     # "PYRO:thing@localhost:36124"
uri2 = d.uriFor(uri.object, nat=False)  # get non-natted uri





The Name server can also be started behind a NAT: it has a couple of command line options that
allow you to specify a nathost and natport for it. See Starting the Name Server.


Note

The broadcast responder always returns the internal address, never the external NAT address.
Also, the name server itself won’t translate any URIs that are registered with it.
So if you want it to publish URIs with ‘external’ locations in them, you have to tell
the Daemon that registers these URIs to use the correct nathost and natport as well.




Note

In some situations the NAT simply is configured to pass through any port one-to-one to another
host behind the NAT router/firewall. Pyro facilitates this by allowing you to set the natport
to 0, in which case Pyro will replace it by the internal port number.





‘Failed to locate the nameserver’ or ‘Connection refused’ error, what now?

Usually when you get an error like “failed to locate the name server” or “connection refused” it is because
there is a configuration problem in your network setup, such as a firewall blocking certain network connections.
Sometimes it can be because you configured Pyro wrong. A checklist to follow to diagnose your issue can be as follows:


	is the name server on a network interface that is visible on the network? If it’s on localhost, then it’s definitely not! (check the URI)


	is the Pyro object’s daemon on a network interface that is visible on the network? If it’s on localhost, then it’s definitely not! (check the URI)


	with what URI is the Pyro object registered in the Name server? See previous item.


	can you ping the server from your client machine?


	can you telnet to the given host+port from your client machine?


	dealing with IPV4 versus IPV6: do both client and server use the same protocol?


	is the server’s ip address as shown one of an externally reachable network interface?


	do you have your server behind a NAT router? See Pyro behind a NAT router/firewall.


	do you have a firewall or packetfilter running that prevents the connection?


	do you have the same Pyro versions on both server and client?


	what does the pyro logfiles tell you (enable it via the config items on both the server and the client, including the name server. See Logging.


	(if not using the default:) do you have a compatible serializer configuration?


	can you obtain a few bytes from the wire using netcat, see Wire protocol version.






Binary data transfer / file transfer


Using Pyro for large data transfers

At the end of this paragraph, a few alternative approaches of reasonably efficient binary data transfer
are presented, where most of the code still uses just Pyro’s high level abstractions.


Pyro wasn’t designed to transfer large amounts of binary data (images, sound files, video clips):
the protocol is not optimized for these kinds of data. The occasional transmission of such data
is fine but if you’re dealing with a lot of them or with big files,
it is usually better to use something else to do the actual data transfer (file share+file copy, ftp, http, scp, rsync).

If you find that the default serializer (serpent) is slowing down your data transfer too much,
you could simply try switching to the ‘marshal’ serializer. It is faster (but supports less types).


Numpy arrays and Pyro

Numpy data types usually cannot be transferred directly, see Pyro and Numpy for more info.


Pyro has a 1 gigabyte message size limitation.  You can avoid hitting this limit by using
the remote iterator feature (return chunks via an iterator or generator function and consume them
on demand in your client).


Note

About the Serpent serializer and binary data:
If you transfer binary data using the serpent serializer, be aware that
its serialization protocol is text based so it has to encode binary data. By default, it uses base-64 to do that.
This means on the receiving side, instead of the raw bytes, you get a little dictionary
like this instead: {'data': 'aXJtZW4gZGUgam9uZw==', 'encoding': 'base64'}
Your client code needs to be explicitly aware of this and to get the original binary data back,
it has to base-64 decode the data element by itself.  The easiest way to do this is using the
serpent.tobytes helper function from the serpent library, which will convert
the result to actual bytes if needed, and leave it untouched if it is already in bytes form.

You can tell the serpent serializer to use Python’s repr format for bytes types instead by
setting the SERPENT_BYTES_REPR config item to True. Do this for the code that is serializing
the bytes. Serpent (or rather, the safe eval function it uses) will automatically convert this format back to the actual bytes type when deserializing it.
This is more convenient than the default base-64 representation, but it is also less efficient
(slower and takes more memory).  This feature is new since Pyro 5.13 and requires Serpent library 1.40 or newer.



The following table is an indication of the relative speeds when dealing with large amounts
of binary data. It lists the results of the hugetransfer example [https://github.com/irmen/Pyro5/tree/master/examples/hugetransfer] , using python 3.8,
over a 1 Gbit LAN connection:



	serializer

	str mb/sec

	bytes mb/sec

	bytearray mb/sec

	bytearray w/iterator





	marshal

	95.7

	97.1

	98.4

	55.4



	serpent

	41.0

	23.2

	24.3

	22.3



	json

	48.1

	not supported

	not supported

	not supported






The json serializer only works with strings, it can’t serialize binary data at all.
The serpent serializer can, but read the note above about why it’s quite inefficent there.
Marshal is very efficient and is almost saturating the 1 Gbit connection speed limit.

Alternative: avoid most of the serialization overhead by using annotations

Pyro allows you to add custom annotation chunks to the request and response messages
(see  Message annotations). Because these are binary chunks they will not be passed
through the serializer at all. Depending on what the configured maximum message size is
you may have to split up larger files. The filetransfer example [https://github.com/irmen/Pyro5/tree/master/examples/filetransfer] contains
fully working example code to see this in action. It combines this with the remote
iterator capability of Pyro to easily get all chunks of the file.
It has to split up the file in small chunks but is still quite a bit faster than transmitting
bytes through regular response values as bytes or arrays. Also it is using only regular Pyro high level logic
and no low level network or socket code.

Alternative: integrating raw socket transfer in a Pyro server

It is possible to get data transfer speeds that are close to the limit of your network adapter
by doing the actual data transfer via low-level socket code and everything else via Pyro.
This keeps the amount of low-level code to a minimum.
Have a look at the filetransfer example [https://github.com/irmen/Pyro5/tree/master/examples/filetransfer] again, to see a possible way of doing this.
It creates a special Daemon subclass that uses Pyro for everything as usual,
but for actual file transfer it sets up a dedicated temporary socket connection over which the file data
is transmitted.



IPV6 support

Pyro supports IPv6. You can use IPv6 addresses (enclosed in brackets) in the same places where you would
normally have used IPv4 addresses. There’s one exception: the address notation in a Pyro URI. For example:

PYRO:objectname@[::1]:3456

this points at a Pyro object located on the IPv6 “::1” address (localhost). When Pyro displays a numeric
IPv6 location from an URI it will also use the bracket notation. This bracket notation is only used
in Pyro URIs, everywhere else you just type the IPv6 address without brackets.

To tell Pyro to prefer using IPv6 you can use the PREFER_IP_VERSION config item. It is set to 0 by default,
which means that your operating system is selecting the preferred protocol. Often this is ipv6 if it is
available, but not always, so you can force it by setting this config item to 6 (or 4, if you want ipv4)



Pyro and Numpy

Pyro doesn’t support Numpy out of the box. You’ll see certain errors occur when
trying to use numpy objects (ndarrays, etcetera) with Pyro:

TypeError: array([1, 2, 3]) is not JSON serializable
  or
TypeError: don't know how to serialize class <type 'numpy.ndarray'>
  or
TypeError: don't know how to serialize class <class 'numpy.int64'>
  or similar.





These errors are caused by Numpy datatypes not being recognised by Pyro’s serializer. Why is this:


	numpy is a third party library and there are many, many others. It is not Pyro’s responsibility to understand all of them.


	numpy is often used in scenarios with large amounts of data. Sending these large arrays over the wire through Pyro
is often not the best solution. It is not useful to provide transparent support for numpy types
when you’ll be running into trouble often such as slow calls and large network overhead.


	Pyrolite (Pyrolite - client library for Java and .NET) would have to get numpy support as well and that is a lot of work (because every numpy type
would require a mapping to the appropriate Java or .NET type)




If you still want to use numpy with Pyro, you’ll have to convert the data to standard Python datatypes before using them in Pyro.
So instead of just na = numpy.array(...); return na;, use this instead:  return na.tolist().
Or perhaps even return array.array('i', na) (serpent understands array.array just fine).
Note that the elements of a numpy array usually are of a special numpy datatype as well (such as numpy.int32).
If you don’t convert these individually as well, you will still get serialization errors. That is why something like
list(na) doesn’t work: it seems to return a regular python list but the elements are still numpy datatypes.
You have to use the full conversions as mentioned earlier.
Note that you’ll have to do a bit more work to deal with multi-dimensional arrays: you have to convert
the shape of the array separately.



Pyro via HTTP and JSON


advanced topic

This is an advanced/low-level Pyro topic.


Pyro provides a HTTP gateway server that translates HTTP requests into Pyro calls. It responds with JSON messages.
This allows clients (including web browsers) to use a simple http interface to call Pyro objects.
Pyro’s JSON serialization format is used so the gateway simply passes the JSON response messages back to the caller.
It also provides a simple web page that shows how stuff works.

Starting the gateway:

You can launch the HTTP gateway server conveniently via the command line tool.
Because the gateway is written as a wsgi app, you can also stick it into a wsgi server of your own choice.
Import pyro_app from Pyro5.utils.httpgateway to do that (that’s the app you need to use).

python -m Pyro5.utils.httpgateway [options] (or simply: pyro5-httpgateway [options])

A short explanation of the available options can be printed with the help option:


	
-h, --help

	Print a short help message and exit.





Most other options should be self explanatory; you can set the listening host and portname etc.
An important option is the exposed names regex option: this controls what objects are
accessible from the http gateway interface. It defaults to something that won’t just expose every
internal object in your system. If you want to toy a bit with the examples provided in the gateway’s
web page, you’ll have to change the option to something like: r'Pyro\.|test\.' so that those objects
are exposed. This regex is the same as used when listing objects from the name server, so you can use the
nsc tool to check it (with the listmatching command).

Using the gateway:

You request the url http://localhost:8080/pyro/<<objectname>>/<<method>> to invoke a method on the
object with the given name (yes, every call goes through a naming server lookup).
Parameters are passed via a regular query string parameter list (in case of a GET request) or via form post parameters
(in case of a POST request). The response is a JSON document.
In case of an exception, a JSON encoded exception object is returned.
You can easily call this from your web page scripts using javascript’s fetch().
Have a look at the page source of the gateway’s web page to see how this could be done.
Note that you have to comply with the browser’s same-origin policy: if you want to allow your own scripts
to access the gateway, you’ll have to make sure they are loaded from the same website.

The http gateway server is stateless at the moment. This means every call you do will end be processed by
a new Pyro proxy in the gateway server. This is not impacting your client code though, because every call that it
does is also just a stateless http call. It only impacts performance: doing large amounts of calls through
the http gateway will perform much slower as the same calls processed by a native Pyro proxy (which you can instruct
to operate in batch mode as well). However because Pyro is quite efficient, a call through
the gateway is still processed in just a few milliseconds, naming lookup and json serialization all included.

Special http request headers:


	X-Pyro-Options: add this header to the request to set certain pyro options for the call. Possible values (comma-separated):


	oneway: force the Pyro call to be a oneway call and return immediately.
The gateway server still returns a 200 OK http response as usual, but the response data is empty.
This option is to override the semantics for non-oneway method calls if you so desire.






	X-Pyro-Gateway-Key: add this header to the request to set the http gateway key. You can also set it on the request
with a $key=.... querystring parameter.




Special Http response headers:


	X-Pyro-Correlation-Id: contains the correlation id Guid that was used for this request/response.




Http response status codes:


	200 OK: all went well, response is the Pyro response message in JSON serialized format


	403 Forbidden: you’re trying to access an object that is not exposed by configuration


	404 Not Found: you’re requesting a non existing object


	500 Internal server error: something went wrong during request processing, response is serialized exception object (if available)




Look at the http example [https://github.com/irmen/Pyro5/tree/master/examples/http] for working code how you could set this up.



Client information on the current_context, correlation id


advanced topic

This is an advanced/low-level Pyro topic.


Pyro provides a thread-local object with some information about the current Pyro method call,
such as the client that’s performing the call. It is available as Pyro5.current_context
(shortcut to Pyro5.core.current_context).
When accessed in a Pyro server it contains various attributes:


	
Pyro5.current_context.client

	(Pyro5.socketutil.SocketConnection)
this is the socket connection with the client that’s doing the request.
You can check the source to see what this is all about, but perhaps the single most useful
attribute exposed here is sock, which is the socket connection.
So the client’s IP address can for instance be obtained via Pyro5.current_context.client.sock.getpeername()[0] .
However, since for oneway calls the socket connection will likely be closed already, this is not 100% reliable.
Therefore Pyro stores the result of the getpeername call in a separate attribute on the context:
client_sock_addr (see below)






	
Pyro5.current_context.client_sock_addr

	(tuple) the socket address of the client doing the call. It is a tuple of the client host address and the port.






	
Pyro5.current_context.seq

	(int) request sequence number






	
Pyro5.current_context.msg_flags

	(int) message flags, see Pyro5.message.Message






	
Pyro5.current_context.serializer_id

	(int) numerical id of the serializer used for this communication, see Pyro5.message.Message .






	
Pyro5.current_context.annotations

	(dict) message annotations, key is a 4-letter string and the value is a byte sequence.
Used to send and receive annotations with Pyro requests.
See Message annotations for more information about that.






	
Pyro5.current_context.response_annotations

	(dict) message annotations, key is a 4-letter string and the value is a byte sequence.
Used in client code, the annotations returned by a Pyro server are available here.
See Message annotations for more information about that.






	
Pyro5.current_context.correlation_id

	(uuid.UUID, optional)  correlation id of the current request / response.
If you set this (in your client code) before calling a method on a Pyro proxy, Pyro will transfer the
correlation id to the server context. If the server on their behalf invokes another
Pyro method, the same correlation id will be passed along. This way it is possible
to relate all remote method calls that originate from a single call.
To make this work you’ll have to set this to a new uuid.UUID in your client
code right before you call a Pyro method.
Note that it is required that the correlation id is of type uuid.UUID.
Note that the HTTP gateway (see Pyro via HTTP and JSON) also creates a correlation id for
every request, and will return it via the X-Pyro-Correlation-Id HTTP-header in the response.
It will also accept this header optionally on a request in which case it will use the
value from the header rather than generating a new id.





For an example of how this information can be retrieved, and how to set the correlation_id,
see the callcontext example [https://github.com/irmen/Pyro5/tree/master/examples/callcontext] .
See the usersession example [https://github.com/irmen/Pyro5/tree/master/examples/usersession] to learn how you could use it to build user-bound resource access without concurrency problems.



Automatically freeing resources when client connection gets closed


advanced topic

This is an advanced/low-level Pyro topic.


A client can call remote methods that allocate stuff in the server.
Normally the client is responsible to call other methods once the resources should be freed.

However if the client forgets this or the connection to the server is forcefully closed before
the client can free the resources, the resources in the server will usually not be freed anymore.

You may be able to solve this in your server code yourself (perhaps using some form of
keepalive/timeout mechanism) but Pyro 4.63 and newer provides a built-in mechanism that can help:
resource tracking on the client connection. Your server will register the resources when they
are allocated, thereby making them tracked resources on the client connection.
These tracked resources will be automatically freed by Pyro if the client connection is closed.

For this to work, the resource object should have a close method (Pyro will call this).
If needed, you can also override Pyro5.core.Daemon.clientDisconnect() and do the cleanup
yourself with the tracked_resources on the connection object.

Resource tracking and untracking is done in your server class on the Pyro5.current_context object:


	
Pyro5.current_context.track_resource(resource)

	Let Pyro track the resource on the current client connection.






	
Pyro5.current_context.untrack_resource(resource)

	Untrack a previously tracked resource, useful if you have freed it normally.





See the resourcetracking example [https://github.com/irmen/Pyro5/tree/master/examples/resourcetracking] for working code utilizing this.


Note

The order in which the resources are freed is arbitrary.
Also, if the resource can be garbage collected normally by Python,
it is removed from the tracked resources. So the close method should
not be the only way to properly free such resources (maybe you need a __del__ as well).





Message annotations


advanced topic

This is an advanced/low-level Pyro topic.


Pyro’s wire protocol allows for a very flexible messaging format by means of annotations.
Annotations are extra information chunks that are added to the pyro messages traveling
over the network.

An annotation is a low level datastructure (to optimize the generation of network messages):
a chunk identifier string of exactly 4 characters (such as “CODE”), and its value, a byte sequence.
If you want to put specific data structures into an annotation chunk value, you have to
encode them to a byte sequence yourself (possibly by using one of Pyro’s serializers, or any other).
When processing a custom annotation, you have to decode it yourself too.
Communicating annotations with Pyro is done via a normal dictionary of chunk id -> data bytes.
Pyro will take care of encoding this dictionary into the wire message and extracting it out of a response message.

Adding annotations to messages:

In client code, you can set the annotations property of the Pyro5.current_context object right
before the proxy method call. Pyro will then add that annotations dict to the request message.
In server code, you do this by setting the response_annotations
property of the Pyro5.current_context in your Pyro object, right before returning the regular response value.
Pyro will add the annotations dict to the response message.

Using annotations:

In your client code, you can do that as well, but you should look at the response_annotations of this context object instead.
If you’re using large annotation chunks, it is advised to clear these fields after use.
See Client information on the current_context, correlation id.
In your server code, in the Daemon, you can use the Pyro5.current_context to access the annotations of the last message that was received.

To see how you can work with custom message annotations, see the
callcontext [https://github.com/irmen/Pyro5/tree/master/examples/callcontext] or
filetransfer [https://github.com/irmen/Pyro5/tree/master/examples/filetransfer] examples.



Connection handshake


advanced topic

This is an advanced/low-level Pyro topic.


When a proxy is first connecting to a Pyro daemon, it exchanges a few messages to set up and validate the connection.
This is called the connection handshake. Part of it is the daemon returning the object’s metadata (see Metadata from the daemon).
You can hook into this mechanism and influence the data that is initially exchanged during the connection setup,
and you can act on this data. You can disallow the connection based on this, for example.

You can set your own data on the proxy attribute Pyro5.client.Proxy._pyroHandshake. You can set any serializable object.
Pyro will send this as the handshake message to the daemon when the proxy tries to connect.
In the daemon, override the method Pyro5.server.Daemon.validateHandshake() to customize/validate the connection setup.
This method receives the data from the proxy and you can either raise an exception if you don’t want to allow the connection,
or return a result value if you are okay with the new connection. The result value again can be any serializable object.
This result value will be received back in the Proxy where you can act on it
if you subclass the proxy and override Pyro5.client.Proxy._pyroValidateHandshake().

For an example of how you can work with connections handshake validation, see the handshake example [https://github.com/irmen/Pyro5/tree/master/examples/handshake] .
It implements a (bad!) security mechanism that requires the client to supply a “secret” password to be able to connect to the daemon.



Efficient dispatchers or gateways that don’t de/reserialize messages


advanced topic

This is an advanced/low-level Pyro topic.


Imagine you’re designing a setup where a Pyro call is essentially dispatched or forwarded
to another server. The dispatcher (sometimes also called gateway) does nothing else than
deciding who the message is for, and then forwarding the Pyro call to the actual object that
performs the operation.

This can be built easily with Pyro by ‘intercepting’ the call in a dispatcher object,
and performing the remote method call again on the actual server object. There’s nothing wrong
with this except for perhaps two things:


	Pyro will deserialize and reserialize the remote method call parameters on every hop, this can
be quite inefficient if you’re dealing with many calls or large argument data structures.


	The dispatcher object is now dependent on the method call argument data types, because Pyro
has to be able to de/reserialize them. This often means the dispatcher also needs to have access
to the same source code files that define the argument data types, that the client and server use.




As long as the dispatcher itself  doesn’t have to know what is even in the actual
message, Pyro provides a way to avoid both issues mentioned above: use the Pyro5.client.SerializedBlob.
If you use that as the (single) argument to a remote method call, Pyro will not deserialize the message payload
until you ask for it by calling the deserialized() method on it. Which is something you only do in the
actual server object, and not in the dispatcher.
Because the message is then never de/reserialized in the dispatcher code, you avoid the serializer overhead,
and also don’t have to include the source code for the serialized types in the dispatcher.
It just deals with a blob of serialized bytes.

An example that shows how this mechanism can be used, is blob-dispatch [https://github.com/irmen/Pyro5/tree/master/examples/blob-dispatch] .



Hooking onto existing connected sockets such as from socketpair()

For communication between threads or sub-processes, there is socket.socketpair(). It creates
spair of connected sockets that you can share between the threads or processes.
Pyro can use a user-created socket like that, instead of creating
new sockets itself, which means you can use Pyro to talk between threads or sub-processes
over an efficient and isolated channel.
You do this by creating a socket (or a pair) and providing it as the connected_socket parameter
to the Daemon and Proxy classes. For the Daemon, don’t pass any other arguments because they
won’t be used anyway. For the Proxy, set only the first parameter (uri) to just the name of the
object in the daemon you want to connect to. So don’t use a PYRO or PYRONAME prefix for the uri in this case.

Closing the proxy or the daemon will not close the underlying user-supplied socket so you can use it again
for another proxy (to access a different object). You created the socket(s) yourself,
and you also have to close the socket(s) yourself.

See the socketpair example [https://github.com/irmen/Pyro5/tree/master/examples/socketpair] for two example programs (one using threads, the other using fork
to create a child process).





            

          

      

      

    

  

  
    
    

    Configuring Pyro
    

    

    
 
  

    
      
          
            
  
Configuring Pyro

Pyro can be configured using several configuration items.
The current configuration is accessible from the Pyro5.config object, it contains all config items as attributes.
You can read them and update them to change Pyro’s configuration.
(usually you need to do this at the start of your program).
For instance, to enable message compression and change the server type, you add something like this to the start of your code:

Pyro5.config.COMPRESSION = True
Pyro5.config.SERVERTYPE = "multiplex"





You can also set them outside of your program, using environment variables from the shell.
To avoid conflicts, the environment variables have a ``PYRO_`` prefix. This means that if you want
to change the same two settings as above, but by using environment variables, you would do something like:

$ export PYRO_COMPRESSION=true
$ export PYRO_SERVERTYPE=multiplex

(or on windows:)
C:\> set PYRO_COMPRESSION=true
C:\> set PYRO_SERVERTYPE=multiplex





This environment defined configuration is simply used as initial values for Pyro’s configuration object.
Your code can still overwrite them by setting the items to other values, or by resetting the config as a whole.


Resetting the config to default values


	
Pyro5.config.reset([use_environment=True])

	Resets the configuration items to their builtin default values.
If use_environment is True, it will overwrite builtin config items with any values set
by environment variables. If you don’t trust your environment, it may be a good idea
to reset the config items to just the builtin defaults (ignoring any environment variables)
by calling this method with use_environment set to False.
Do this before using any other part of the Pyro library.







Inspecting current config

To inspect the current configuration you have several options:


	Access individual config items: print(Pyro5.config.COMPRESSION)


	Dump the config in a console window: python -m Pyro5.configure (or simply pyro5-check-config)
This will print something like:

Pyro version: 5.10
Loaded from: /home/irmen/Projects/pyro5/Pyro5
Python version: CPython 3.8.2 (Linux, posix)
Protocol version: 502
Currently active global configuration settings:
BROADCAST_ADDRS = ['<broadcast>', '0.0.0.0']
COMMTIMEOUT = 0.0
COMPRESSION = False
...







	Access the config as a dictionary: Pyro5.config.as_dict()


	Access the config string dump (used in #2): Pyro5.config.dump()






Overview of Config Items



	config item

	type

	default

	meaning





	COMMTIMEOUT

	float

	0.0

	Network communication timeout in seconds. 0.0=no timeout (infinite wait)



	COMPRESSION

	bool

	False

	Enable to make Pyro compress the data that travels over the network



	DETAILED_TRACEBACK

	bool

	False

	Enable to get detailed exception tracebacks (including the value of local variables per stack frame)



	HOST

	str

	localhost

	Hostname where Pyro daemons will bind on



	MAX_MESSAGE_SIZE

	int

	1073741824 (1 Gb)

	Maximum size in bytes of the messages sent or received on the wire. If a message exceeds this size, a ProtocolError is raised.



	NS_HOST

	str

	equal to HOST

	Hostname for the name server. Used for locating in clients only (use the normal HOST config item in the name server itself)



	NS_PORT

	int

	9090

	TCP port of the name server. Used by the server and for locating in clients.



	NS_BCPORT

	int

	9091

	UDP port of the broadcast responder from the name server. Used by the server and for locating in clients.



	NS_BCHOST

	str

	None

	Hostname for the broadcast responder of the name server. Used by the server only.



	NS_AUTOCLEAN

	float

	0.0

	Specify a recurring period in seconds where the Name server checks its registrations and removes the ones that are not available anymore. (0=disabled, otherwise should be >=3)



	NS_LOOKUP_DELAY

	float

	0.0

	The max. number of seconds a name lookup will wait until the name becomes available in the nameserver (client-side retry)



	NATHOST

	str

	None

	External hostname in case of NAT (used by the server)



	NATPORT

	int

	0

	External port in case of NAT (used by the server) 0=replicate internal port number as NAT port



	BROADCAST_ADDRS

	str

	<broadcast>, 0.0.0.0

	List of comma separated addresses that Pyro should send broadcasts to (for NS locating in clients)



	ONEWAY_THREADED

	bool

	True

	Enable to make oneway calls be processed in their own separate thread



	POLLTIMEOUT

	float

	2.0

	For the multiplexing server only: the timeout of the select or poll calls



	SERVERTYPE

	str

	thread

	Select the Pyro server type. thread=thread pool based, multiplex=select/poll/kqueue based



	SOCK_REUSE

	bool

	True

	Should SO_REUSEADDR be used on sockets that Pyro creates.



	SOCK_NODELAY

	bool

	False

	Use tcp_nodelay on sockets



	PREFER_IP_VERSION

	int

	0

	The IP address type that is preferred (4=ipv4, 6=ipv6, 0=let OS decide).



	SERPENT_BYTES_REPR

	bool

	False

	If True, use Python’s repr format to serialize bytes types, rather than the base-64 encoding format.



	THREADPOOL_SIZE

	int

	80

	For the thread pool server: maximum number of threads running



	THREADPOOL_SIZE_MIN

	int

	4

	For the thread pool server: minimum number of threads running



	SERIALIZER

	str

	serpent

	The wire protocol serializer to use for clients/proxies (one of: serpent, json, marshal, msgpack)



	LOGWIRE

	bool

	False

	If wire-level message data should be written to the logfile (you may want to disable COMPRESSION)



	MAX_RETRIES

	int

	0

	Automatically retry network operations for some exceptions (timeout / connection closed), be careful to use when remote functions have a side effect (e.g.: calling twice results in error)



	ITER_STREAMING

	bool

	True

	Should iterator item streaming support be enabled in the server (default=True)



	ITER_STREAM_LIFETIME

	float

	0.0

	Maximum lifetime in seconds for item streams (default=0, no limit - iterator only stops when exhausted or client disconnects)



	ITER_STREAM_LINGER

	float

	30.0

	Linger time in seconds to keep an item stream alive after proxy disconnects (allows to reconnect to stream)



	SSL

	bool

	False

	Should SSL/TSL communication security be used? Enabling it also requires some other SSL config items to be set.



	SSL_SERVERCERT

	str

	empty str

	Location of the server’s certificate file



	SSL_SERVERKEY

	str

	empty str

	Location of the server’s private key file



	SSL_SERVERKEYPASSWD

	str

	empty str

	Password for the server’s private key



	SSL_REQUIRECLIENTCERT

	bool

	False

	Should the server require clients to connect with their own certificate (2-way-ssl)



	SSL_CLIENTCERT

	str

	empty str

	Location of the client’s certificate file



	SSL_CLIENTKEY

	str

	empty str

	Location of the client’s private key file



	SSL_CLIENTKEYPASSWD

	str

	empty str

	Password for the client’s private key



	SSL_CACERTS

	str

	empty str

	Location of a ‘CA’ signing certificate (or a directory containing these in PEM format, “following an OpenSSL specific layout” [https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_verify_locations].)






There are two special config items that control Pyro’s logging, and that are only available as environment variable settings.
This is because they are used at the moment the Pyro5 package is being imported
(which means that modifying them as regular config items after importing Pyro5 is too late and won’t work).

It is up to you to set the environment variable you want to the desired value. You can do this from your OS or shell,
or perhaps by modifying os.environ in your Python code before importing Pyro5.



	environment variable

	type

	default

	meaning





	PYRO_LOGLEVEL

	string

	not set

	The log level to use for Pyro’s logger (DEBUG, WARN, …) See Python’s standard logging module for the allowed values. If it is not set, no logging is being configured.



	PYRO_LOGFILE

	string

	pyro.log

	The name of the log file. Use {stderr} to make the log go to the standard error output.










            

          

      

      

    

  

  
    
    

    Pyro5 library API
    

    

    
 
  

    
      
          
            
  
Pyro5 library API

This chapter describes Pyro’s library API. All Pyro classes and functions are defined in sub packages
such as Pyro5.core, but for ease of use, the most important ones are also placed in the
Pyro5.api package.



	Pyro5.api — Main API package
	BatchProxy

	Daemon
	Daemon.annotations()

	Daemon.clientDisconnect()

	Daemon.close()

	Daemon.combine()

	Daemon.events()

	Daemon.handleRequest()

	Daemon.housekeeping()

	Daemon.locationStr

	Daemon.proxyFor()

	Daemon.register()

	Daemon.requestLoop()

	Daemon.resetMetadataCache()

	Daemon.selector

	Daemon.serveSimple()

	Daemon.shutdown()

	Daemon.sock

	Daemon.sockets

	Daemon.unregister()

	Daemon.uriFor()

	Daemon.validateHandshake()





	DaemonObject
	DaemonObject.get_metadata()

	DaemonObject.info()

	DaemonObject.ping()

	DaemonObject.registered()





	Proxy
	Proxy._pyroBind()

	Proxy._pyroRelease()

	Proxy._pyroReconnect()

	Proxy._pyroValidateHandshake()

	Proxy._pyroTimeout

	Proxy._pyroMaxRetries

	Proxy._pyroSerializer

	Proxy._pyroHandshake

	Proxy._pyroLocalSocket





	SerializedBlob
	SerializedBlob.deserialized()





	SerializerBase
	SerializerBase.class_to_dict()

	SerializerBase.dict_to_class()

	SerializerBase.register_class_to_dict()

	SerializerBase.register_dict_to_class()

	SerializerBase.unregister_class_to_dict()

	SerializerBase.unregister_dict_to_class()





	URI
	URI.isUnixsockLocation()

	URI.location





	behavior()

	callback()

	expose()

	locate_ns()

	oneway()

	register_class_to_dict()

	register_dict_to_class()

	resolve()

	serve()

	start_ns()

	start_ns_loop()

	type_meta()

	unregister_class_to_dict()

	unregister_dict_to_class()





	Pyro5.config — Configuration items

	Pyro5.client — Client code logic
	BatchProxy

	Proxy
	Proxy._pyroBind()

	Proxy._pyroRelease()

	Proxy._pyroReconnect()

	Proxy._pyroValidateHandshake()

	Proxy._pyroTimeout

	Proxy._pyroMaxRetries

	Proxy._pyroSerializer

	Proxy._pyroHandshake

	Proxy._pyroLocalSocket





	SerializedBlob
	SerializedBlob.deserialized()









	Pyro5.core — core Pyro logic
	URI
	URI.isUnixsockLocation()

	URI.location





	locate_ns()

	resolve()

	type_meta()





	Pyro5.server — Server (daemon) logic
	Daemon
	Daemon.annotations()

	Daemon.clientDisconnect()

	Daemon.close()

	Daemon.combine()

	Daemon.events()

	Daemon.handleRequest()

	Daemon.housekeeping()

	Daemon.locationStr

	Daemon.proxyFor()

	Daemon.register()

	Daemon.requestLoop()

	Daemon.resetMetadataCache()

	Daemon.selector

	Daemon.serveSimple()

	Daemon.shutdown()

	Daemon.sock

	Daemon.sockets

	Daemon.unregister()

	Daemon.uriFor()

	Daemon.validateHandshake()





	DaemonObject
	DaemonObject.get_metadata()

	DaemonObject.info()

	DaemonObject.ping()

	DaemonObject.registered()





	behavior()

	callback()

	expose()

	oneway()

	serve()





	Pyro5.errors — Exception classes
	CommunicationError

	ConnectionClosedError

	DaemonError

	MessageTooLargeError

	NamingError

	ProtocolError

	PyroError

	SecurityError

	SerializeError

	TimeoutError

	excepthook()

	format_traceback()

	get_pyro_traceback()





	Pyro5.nameserver — Pyro name server
	start_ns()

	start_ns_loop()

	NameServer
	NameServer.count()

	NameServer.list()

	NameServer.lookup()

	NameServer.ping()

	NameServer.register()

	NameServer.remove()

	NameServer.set_metadata()

	NameServer.yplookup()









	Pyro5.callcontext — Call context handling
	current_context





	Pyro5.protocol — Pyro wire protocol
	ReceivingMessage
	ReceivingMessage.add_payload()

	ReceivingMessage.validate()





	SendingMessage
	SendingMessage.ping()





	log_wiredata()

	recv_stub()





	Pyro5.socketutil — Socket related utilities
	SocketConnection

	bind_unused_port()

	create_bc_socket()

	create_socket()

	find_probably_unused_port()

	get_interface()

	get_ip_address()

	get_ssl_context()

	interrupt_socket()

	receive_data()

	send_data()

	set_keepalive()

	set_nodelay()

	set_noinherit()

	set_reuseaddr()





	Pyro5.compatibility.Pyro4 — Pyro4 backward compatibility layer
	Daemon

	Proxy

	URI

	behavior()

	callback()

	expose()

	oneway()





	Pyro5.utils.echoserver — Built-in echo server for testing purposes
	EchoServer
	EchoServer.echo()

	EchoServer.error()

	EchoServer.error_with_text()

	EchoServer.generator()

	EchoServer.oneway_echo()

	EchoServer.oneway_slow()

	EchoServer.shutdown()

	EchoServer.slow()









	Pyro5.utils.httpgateway — HTTP to Pyro gateway
	pyro_app()





	Socket server API contract
	SocketServer_API
	SocketServer_API.init()

	SocketServer_API.loop()

	SocketServer_API.events()

	SocketServer_API.shutdown()

	SocketServer_API.close()

	SocketServer_API.wakeup()

	SocketServer_API.sockets

	SocketServer_API.sock

	SocketServer_API.locationStr
















            

          

      

      

    

  

  
    
    

    Pyro5.api — Main API package
    

    

    
 
  

    
      
          
            
  
Pyro5.api — Main API package

Single module that centralizes the main symbols from the Pyro5 API.
It imports most of the other packages that it needs
and provides shortcuts to the most frequently used objects and functions from those packages.
This means you can mostly just import Pyro5.api in your code to have access to most of
the Pyro5 objects and functions.


	
class Pyro5.api.BatchProxy(proxy)

	Proxy that lets you batch multiple method calls into one.
It is constructed with a reference to the normal proxy that will
carry out the batched calls. Call methods on this object that you want to batch,
and finally call the batch proxy itself. That call will return a generator
for the results of every method call in the batch (in sequence).






	
class Pyro5.api.Daemon(host=None, port=0, unixsocket=None, nathost=None, natport=None, interface=<class 'Pyro5.server.DaemonObject'>, connected_socket=None)

	Pyro daemon. Contains server side logic and dispatches incoming remote method calls
to the appropriate objects.


	
annotations()

	Override to return a dict with custom user annotations to be sent with each response message.






	
clientDisconnect(conn)

	Override this to handle a client disconnect.
Conn is the SocketConnection object that was disconnected.






	
close()

	Close down the server and release resources






	
combine(daemon)

	Combines the event loop of the other daemon in the current daemon’s loop.
You can then simply run the current daemon’s requestLoop to serve both daemons.
This works fine on the multiplex server type, but doesn’t work with the threaded server type.






	
events(eventsockets)

	for use in an external event loop: handle any requests that are pending for this daemon






	
handleRequest(conn)

	Handle incoming Pyro request. Catches any exception that may occur and
wraps it in a reply to the calling side, as to not make this server side loop
terminate due to exceptions caused by remote invocations.






	
housekeeping()

	Override this to add custom periodic housekeeping (cleanup) logic.
This will be called every few seconds by the running daemon’s request loop.






	
locationStr

	The location (str of the form host:portnumber) on which the Daemon is listening






	
proxyFor(objectOrId, nat=True)

	Get a fully initialized Pyro Proxy for the given object (or object id) for this daemon.
If nat is False, the configured NAT address (if any) is ignored.
The object or id must be registered in this daemon, or you’ll get an exception.
(you can’t get a proxy for an unknown object)






	
register(obj_or_class, objectId=None, force=False, weak=False)

	Register a Pyro object under the given id. Note that this object is now only
known inside this daemon, it is not automatically available in a name server.
This method returns a URI for the registered object.
Pyro checks if an object is already registered, unless you set force=True.
You can register a class or an object (instance) directly.
For a class, Pyro will create instances of it to handle the remote calls according
to the instance_mode (set via @expose on the class). The default there is one object
per session (=proxy connection). If you register an object directly, Pyro will use
that single object for all remote calls.
With weak=True, only weak reference to the object will be stored, and the object will
get unregistered from the daemon automatically when garbage-collected.






	
requestLoop(loopCondition=<function Daemon.<lambda>>) → None

	Goes in a loop to service incoming requests, until someone breaks this
or calls shutdown from another thread.






	
resetMetadataCache(objectOrId, nat=True)

	Reset cache of metadata when a Daemon has available methods/attributes
dynamically updated.  Clients will have to get a new proxy to see changes






	
property selector

	the multiplexing selector used, if using the multiplex server type






	
static serveSimple(objects, host=None, port=0, daemon=None, ns=True, verbose=True) → None

	Backwards compatibility method to fire up a daemon and start serving requests.
New code should just use the global serve function instead.






	
shutdown()

	Cleanly terminate a daemon that is running in the requestloop.






	
property sock

	the server socket used by the daemon






	
property sockets

	list of all sockets used by the daemon (server socket and all active client sockets)






	
unregister(objectOrId)

	Remove a class or object from the known objects inside this daemon.
You can unregister the class/object directly, or with its id.






	
uriFor(objectOrId, nat=True)

	Get a URI for the given object (or object id) from this daemon.
Only a daemon can hand out proper uris because the access location is
contained in them.
Note that unregistered objects cannot be given an uri, but unregistered
object names can (it’s just a string we’re creating in that case).
If nat is set to False, the configured NAT address (if any) is ignored and it will
return an URI for the internal address.






	
validateHandshake(conn, data)

	Override this to create a connection validator for new client connections.
It should return a response data object normally if the connection is okay,
or should raise an exception if the connection should be denied.










	
class Pyro5.api.DaemonObject(daemon)

	The part of the daemon that is exposed as a Pyro object.


	
get_metadata(objectId)

	Get metadata for the given object (exposed methods, oneways, attributes).






	
info()

	return some descriptive information about the daemon






	
ping()

	a simple do-nothing method for testing purposes






	
registered()

	returns a list of all object names registered in this daemon










	
class Pyro5.api.Proxy(uri, connected_socket=None)

	Pyro proxy for a remote object. Intercepts method calls and dispatches them to the remote object.


	
_pyroBind()

	Bind this proxy to the exact object from the uri. That means that the proxy’s uri
will be updated with a direct PYRO uri, if it isn’t one yet.
If the proxy is already bound, it will not bind again.






	
_pyroRelease()

	release the connection to the pyro daemon






	
_pyroReconnect(tries=100000000)

	(Re)connect the proxy to the daemon containing the pyro object which the proxy is for.
In contrast to the _pyroBind method, this one first releases the connection (if the proxy is still connected)
and retries making a new connection until it succeeds or the given amount of tries ran out.






	
_pyroValidateHandshake(response)

	Process and validate the initial connection handshake response data received from the daemon.
Simply return without error if everything is ok.
Raise an exception if something is wrong and the connection should not be made.






	
_pyroTimeout

	The timeout in seconds for calls on this proxy. Defaults to None.
If the timeout expires before the remote method call returns,
Pyro will raise a Pyro5.errors.TimeoutError






	
_pyroMaxRetries

	Number of retries to perform on communication calls by this proxy, allows you to override the default setting.






	
_pyroSerializer

	Name of the serializer to use by this proxy, allows you to override the default setting.






	
_pyroHandshake

	The data object that should be sent in the initial connection handshake message. Can be any serializable object.






	
_pyroLocalSocket

	The socket that is used locally to connect to the remote daemon.
The format depends on the address family used for the connection, but usually
for IPV4 connections it is the familiar (hostname, port) tuple.
Consult the Python documentation on socket families [https://docs.python.org/3/library/socket.html#socket-families]
for more details










	
class Pyro5.api.SerializedBlob(info, data, is_blob=False)

	Used to wrap some data to make Pyro pass this object transparently (it keeps the serialized payload as-is)
Only when you need to access the actual client data you can deserialize on demand.
This makes efficient, transparent gateways or dispatchers and such possible:
they don’t have to de/reserialize the message and are independent from the serialized class definitions.
You have to pass this as the only parameter to a remote method call for Pyro to understand it.
Init arguments:
info = some (small) descriptive data about the blob. Can be a simple id or name or guid. Must be marshallable.
data = the actual client data payload that you want to transfer in the blob. Can be anything that you would
otherwise have used as regular remote call arguments.


	
deserialized()

	Retrieves the client data stored in this blob. Deserializes the data automatically if required.










	
class Pyro5.api.SerializerBase

	Base class for (de)serializer implementations (which must be thread safe)


	
classmethod class_to_dict(obj)

	Convert a non-serializable object to a dict. Partly borrowed from serpent.






	
classmethod dict_to_class(data)

	Recreate an object out of a dict containing the class name and the attributes.
Only a fixed set of classes are recognized.






	
classmethod register_class_to_dict(clazz, converter, serpent_too=True)

	Registers a custom function that returns a dict representation of objects of the given class.
The function is called with a single parameter; the object to be converted to a dict.






	
classmethod register_dict_to_class(classname, converter)

	Registers a custom converter function that creates objects from a dict with the given classname tag in it.
The function is called with two parameters: the classname and the dictionary to convert to an instance of the class.






	
classmethod unregister_class_to_dict(clazz)

	Removes the to-dict conversion function registered for the given class. Objects of the class
will be serialized by the default mechanism again.






	
classmethod unregister_dict_to_class(classname)

	Removes the converter registered for the given classname. Dicts with that classname tag
will be deserialized by the default mechanism again.










	
class Pyro5.api.URI(uri)

	Pyro object URI (universal resource identifier).
The uri format is like this: PYRO:objectid@location where location is one of:


	hostname:port (tcp/ip socket on given port)


	./u:sockname (Unix domain socket on localhost)





	There is also a ‘Magic format’ for simple name resolution using Name server:
	PYRONAME:objectname[@location]  (optional name server location, can also omit location port)



	And one that looks up things in the name server by metadata:
	PYROMETA:meta1,meta2,...[@location]  (optional name server location, can also omit location port)





You can write the protocol in lowercase if you like (pyro:...) but it will
automatically be converted to uppercase internally.


	
static isUnixsockLocation(location)

	determine if a location string is for a Unix domain socket






	
property location

	property containing the location string, for instance "servername.you.com:5555"










	
Pyro5.api.behavior(instance_mode: str = 'session', instance_creator: Callable | None = None) → Callable

	Decorator to specify the server behavior of your Pyro class.






	
Pyro5.api.callback(method: Callable) → Callable

	decorator to mark a method to be a ‘callback’. This will make Pyro
raise any errors also on the callback side, and not only on the side
that does the callback call.






	
Pyro5.api.expose(method_or_class: _T) → _T

	Decorator to mark a method or class to be exposed for remote calls.
You can apply it to a method or a class as a whole.
If you need to change the default instance mode or instance creator, also use a @behavior decorator.






	
Pyro5.api.locate_ns(host: str | IPv4Address | IPv6Address = '', port: int | None = None, broadcast: bool = True) → client.Proxy

	Get a proxy for a name server somewhere in the network.






	
Pyro5.api.oneway(method: Callable) → Callable

	decorator to mark a method to be oneway (client won’t wait for a response)






	
Pyro5.api.register_class_to_dict(clazz, converter, serpent_too=True)

	Registers a custom function that returns a dict representation of objects of the given class.
The function is called with a single parameter; the object to be converted to a dict.






	
Pyro5.api.register_dict_to_class(classname, converter)

	Registers a custom converter function that creates objects from a dict with the given classname tag in it.
The function is called with two parameters: the classname and the dictionary to convert to an instance of the class.






	
Pyro5.api.resolve(uri: str | URI, delay_time: float = 0.0) → URI

	Resolve a ‘magic’ uri (PYRONAME, PYROMETA) into the direct PYRO uri.
It finds a name server, and use that to resolve a PYRONAME uri into the direct PYRO uri pointing to the named object.
If uri is already a PYRO uri, it is returned unmodified.
You can consider this a shortcut function so that you don’t have to locate and use a name server proxy yourself.
Note: if you need to resolve more than a few names, consider using the name server directly instead of repeatedly
calling this function, to avoid the name server lookup overhead from each call.
You can set delay_time to the maximum number of seconds you are prepared to wait until a name registration
becomes available in the nameserver.






	
Pyro5.api.serve(objects: Dict[Any, str], host: str | IPv4Address | IPv6Address | None = None, port: int = 0, daemon: Daemon | None = None, use_ns: bool = True, verbose: bool = True) → None

	Basic method to fire up a daemon (or supply one yourself).
objects is a dict containing objects to register as keys, and
their names (or None) as values. If ns is true they will be registered
in the naming server as well, otherwise they just stay local.
If you need to publish on a unix domain socket, or require finer control of the daemon’s
behavior, you can’t use this shortcut method. Create a Daemon yourself and use its
appropriate methods.
See the documentation on ‘publishing objects’ (in chapter: Servers) for more details.






	
Pyro5.api.start_ns(host=None, port=None, enableBroadcast=True, bchost=None, bcport=None, unixsocket=None, nathost=None, natport=None, storage=None)

	utility fuction to quickly get a Name server daemon to be used in your own event loops.
Returns (nameserverUri, nameserverDaemon, broadcastServer).






	
Pyro5.api.start_ns_loop(host=None, port=None, enableBroadcast=True, bchost=None, bcport=None, unixsocket=None, nathost=None, natport=None, storage=None)

	utility function that starts a new Name server and enters its requestloop.






	
Pyro5.api.type_meta(class_or_object, prefix='class:')

	extracts type metadata from the given class or object, can be used as Name server metadata.






	
Pyro5.api.unregister_class_to_dict(clazz)

	Removes the to-dict conversion function registered for the given class. Objects of the class
will be serialized by the default mechanism again.






	
Pyro5.api.unregister_dict_to_class(classname)

	Removes the converter registered for the given classname. Dicts with that classname tag
will be deserialized by the default mechanism again.








            

          

      

      

    

  

  
    
    

    Pyro5.config — Configuration items
    

    

    
 
  

    
      
          
            
  
Pyro5.config — Configuration items

Pyro’s configuration is available in the Pyro5.config object.
Detailed information about the API of this object is available in the Configuring Pyro chapter.


Note

creation of the Pyro5.config object

This object is constructed when you import Pyro5.
It is an instance of the Pyro5.configure.Configuration class.
The package initializer code creates it and the initial configuration is
determined (from defaults and environment variable settings).
It is then assigned to Pyro5.config.






            

          

      

      

    

  

  
    
    

    Pyro5.client — Client code logic
    

    

    
 
  

    
      
          
            
  
Pyro5.client — Client code logic

Client related classes (Proxy, mostly)


	
class Pyro5.client.BatchProxy(proxy)

	Proxy that lets you batch multiple method calls into one.
It is constructed with a reference to the normal proxy that will
carry out the batched calls. Call methods on this object that you want to batch,
and finally call the batch proxy itself. That call will return a generator
for the results of every method call in the batch (in sequence).






	
class Pyro5.client.Proxy(uri, connected_socket=None)

	Pyro proxy for a remote object. Intercepts method calls and dispatches them to the remote object.


	
_pyroBind()

	Bind this proxy to the exact object from the uri. That means that the proxy’s uri
will be updated with a direct PYRO uri, if it isn’t one yet.
If the proxy is already bound, it will not bind again.






	
_pyroRelease()

	release the connection to the pyro daemon






	
_pyroReconnect(tries=100000000)

	(Re)connect the proxy to the daemon containing the pyro object which the proxy is for.
In contrast to the _pyroBind method, this one first releases the connection (if the proxy is still connected)
and retries making a new connection until it succeeds or the given amount of tries ran out.






	
_pyroValidateHandshake(response)

	Process and validate the initial connection handshake response data received from the daemon.
Simply return without error if everything is ok.
Raise an exception if something is wrong and the connection should not be made.






	
_pyroTimeout

	The timeout in seconds for calls on this proxy. Defaults to None.
If the timeout expires before the remote method call returns,
Pyro will raise a Pyro5.errors.TimeoutError






	
_pyroMaxRetries

	Number of retries to perform on communication calls by this proxy, allows you to override the default setting.






	
_pyroSerializer

	Name of the serializer to use by this proxy, allows you to override the default setting.






	
_pyroHandshake

	The data object that should be sent in the initial connection handshake message. Can be any serializable object.






	
_pyroLocalSocket

	The socket that is used locally to connect to the remote daemon.
The format depends on the address family used for the connection, but usually
for IPV4 connections it is the familiar (hostname, port) tuple.
Consult the Python documentation on socket families [https://docs.python.org/3/library/socket.html#socket-families]
for more details










	
class Pyro5.client.SerializedBlob(info, data, is_blob=False)

	Used to wrap some data to make Pyro pass this object transparently (it keeps the serialized payload as-is)
Only when you need to access the actual client data you can deserialize on demand.
This makes efficient, transparent gateways or dispatchers and such possible:
they don’t have to de/reserialize the message and are independent from the serialized class definitions.
You have to pass this as the only parameter to a remote method call for Pyro to understand it.
Init arguments:
info = some (small) descriptive data about the blob. Can be a simple id or name or guid. Must be marshallable.
data = the actual client data payload that you want to transfer in the blob. Can be anything that you would
otherwise have used as regular remote call arguments.


	
deserialized()

	Retrieves the client data stored in this blob. Deserializes the data automatically if required.












            

          

      

      

    

  

  
    
    

    Pyro5.core — core Pyro logic
    

    

    
 
  

    
      
          
            
  
Pyro5.core — core Pyro logic

Multi purpose stuff used by both clients and servers (URI etc)


	
class Pyro5.core.URI(uri)

	Pyro object URI (universal resource identifier).
The uri format is like this: PYRO:objectid@location where location is one of:


	hostname:port (tcp/ip socket on given port)


	./u:sockname (Unix domain socket on localhost)





	There is also a ‘Magic format’ for simple name resolution using Name server:
	PYRONAME:objectname[@location]  (optional name server location, can also omit location port)



	And one that looks up things in the name server by metadata:
	PYROMETA:meta1,meta2,...[@location]  (optional name server location, can also omit location port)





You can write the protocol in lowercase if you like (pyro:...) but it will
automatically be converted to uppercase internally.


	
static isUnixsockLocation(location)

	determine if a location string is for a Unix domain socket






	
property location

	property containing the location string, for instance "servername.you.com:5555"










	
Pyro5.core.locate_ns(host: str | IPv4Address | IPv6Address = '', port: int | None = None, broadcast: bool = True) → client.Proxy

	Get a proxy for a name server somewhere in the network.






	
Pyro5.core.resolve(uri: str | URI, delay_time: float = 0.0) → URI

	Resolve a ‘magic’ uri (PYRONAME, PYROMETA) into the direct PYRO uri.
It finds a name server, and use that to resolve a PYRONAME uri into the direct PYRO uri pointing to the named object.
If uri is already a PYRO uri, it is returned unmodified.
You can consider this a shortcut function so that you don’t have to locate and use a name server proxy yourself.
Note: if you need to resolve more than a few names, consider using the name server directly instead of repeatedly
calling this function, to avoid the name server lookup overhead from each call.
You can set delay_time to the maximum number of seconds you are prepared to wait until a name registration
becomes available in the nameserver.






	
Pyro5.core.type_meta(class_or_object, prefix='class:')

	extracts type metadata from the given class or object, can be used as Name server metadata.








            

          

      

      

    

  

  
    
    

    Pyro5.server — Server (daemon) logic
    

    

    
 
  

    
      
          
            
  
Pyro5.server — Server (daemon) logic

Server related classes (Daemon etc)


	
class Pyro5.server.Daemon(host=None, port=0, unixsocket=None, nathost=None, natport=None, interface=<class 'Pyro5.server.DaemonObject'>, connected_socket=None)

	Pyro daemon. Contains server side logic and dispatches incoming remote method calls
to the appropriate objects.


	
annotations()

	Override to return a dict with custom user annotations to be sent with each response message.






	
clientDisconnect(conn)

	Override this to handle a client disconnect.
Conn is the SocketConnection object that was disconnected.






	
close()

	Close down the server and release resources






	
combine(daemon)

	Combines the event loop of the other daemon in the current daemon’s loop.
You can then simply run the current daemon’s requestLoop to serve both daemons.
This works fine on the multiplex server type, but doesn’t work with the threaded server type.






	
events(eventsockets)

	for use in an external event loop: handle any requests that are pending for this daemon






	
handleRequest(conn)

	Handle incoming Pyro request. Catches any exception that may occur and
wraps it in a reply to the calling side, as to not make this server side loop
terminate due to exceptions caused by remote invocations.






	
housekeeping()

	Override this to add custom periodic housekeeping (cleanup) logic.
This will be called every few seconds by the running daemon’s request loop.






	
locationStr

	The location (str of the form host:portnumber) on which the Daemon is listening






	
proxyFor(objectOrId, nat=True)

	Get a fully initialized Pyro Proxy for the given object (or object id) for this daemon.
If nat is False, the configured NAT address (if any) is ignored.
The object or id must be registered in this daemon, or you’ll get an exception.
(you can’t get a proxy for an unknown object)






	
register(obj_or_class, objectId=None, force=False, weak=False)

	Register a Pyro object under the given id. Note that this object is now only
known inside this daemon, it is not automatically available in a name server.
This method returns a URI for the registered object.
Pyro checks if an object is already registered, unless you set force=True.
You can register a class or an object (instance) directly.
For a class, Pyro will create instances of it to handle the remote calls according
to the instance_mode (set via @expose on the class). The default there is one object
per session (=proxy connection). If you register an object directly, Pyro will use
that single object for all remote calls.
With weak=True, only weak reference to the object will be stored, and the object will
get unregistered from the daemon automatically when garbage-collected.






	
requestLoop(loopCondition=<function Daemon.<lambda>>) → None

	Goes in a loop to service incoming requests, until someone breaks this
or calls shutdown from another thread.






	
resetMetadataCache(objectOrId, nat=True)

	Reset cache of metadata when a Daemon has available methods/attributes
dynamically updated.  Clients will have to get a new proxy to see changes






	
property selector

	the multiplexing selector used, if using the multiplex server type






	
static serveSimple(objects, host=None, port=0, daemon=None, ns=True, verbose=True) → None

	Backwards compatibility method to fire up a daemon and start serving requests.
New code should just use the global serve function instead.






	
shutdown()

	Cleanly terminate a daemon that is running in the requestloop.






	
property sock

	the server socket used by the daemon






	
property sockets

	list of all sockets used by the daemon (server socket and all active client sockets)






	
unregister(objectOrId)

	Remove a class or object from the known objects inside this daemon.
You can unregister the class/object directly, or with its id.






	
uriFor(objectOrId, nat=True)

	Get a URI for the given object (or object id) from this daemon.
Only a daemon can hand out proper uris because the access location is
contained in them.
Note that unregistered objects cannot be given an uri, but unregistered
object names can (it’s just a string we’re creating in that case).
If nat is set to False, the configured NAT address (if any) is ignored and it will
return an URI for the internal address.






	
validateHandshake(conn, data)

	Override this to create a connection validator for new client connections.
It should return a response data object normally if the connection is okay,
or should raise an exception if the connection should be denied.










	
class Pyro5.server.DaemonObject(daemon)

	The part of the daemon that is exposed as a Pyro object.


	
get_metadata(objectId)

	Get metadata for the given object (exposed methods, oneways, attributes).






	
info()

	return some descriptive information about the daemon






	
ping()

	a simple do-nothing method for testing purposes






	
registered()

	returns a list of all object names registered in this daemon










	
Pyro5.server.behavior(instance_mode: str = 'session', instance_creator: Callable | None = None) → Callable

	Decorator to specify the server behavior of your Pyro class.






	
Pyro5.server.callback(method: Callable) → Callable

	decorator to mark a method to be a ‘callback’. This will make Pyro
raise any errors also on the callback side, and not only on the side
that does the callback call.






	
Pyro5.server.expose(method_or_class: _T) → _T

	Decorator to mark a method or class to be exposed for remote calls.
You can apply it to a method or a class as a whole.
If you need to change the default instance mode or instance creator, also use a @behavior decorator.






	
Pyro5.server.oneway(method: Callable) → Callable

	decorator to mark a method to be oneway (client won’t wait for a response)






	
Pyro5.server.serve(objects: Dict[Any, str], host: str | IPv4Address | IPv6Address | None = None, port: int = 0, daemon: Daemon | None = None, use_ns: bool = True, verbose: bool = True) → None

	Basic method to fire up a daemon (or supply one yourself).
objects is a dict containing objects to register as keys, and
their names (or None) as values. If ns is true they will be registered
in the naming server as well, otherwise they just stay local.
If you need to publish on a unix domain socket, or require finer control of the daemon’s
behavior, you can’t use this shortcut method. Create a Daemon yourself and use its
appropriate methods.
See the documentation on ‘publishing objects’ (in chapter: Servers) for more details.








            

          

      

      

    

  

  
    
    

    Pyro5.errors — Exception classes
    

    

    
 
  

    
      
          
            
  
Pyro5.errors — Exception classes

The exception hierarchy is as follows:

Exception
  |
  +-- PyroError
        |
        +-- NamingError
        +-- DaemonError
        +-- SecurityError
        +-- CommunicationError
              |
              +-- ConnectionClosedError
              +-- TimeoutError
              +-- ProtocolError
                      |
                      +-- MessageTooLargeError
                      +-- SerializeError





Definition of the various exceptions that are used in Pyro.


	
exception Pyro5.errors.CommunicationError

	Base class for the errors related to network communication problems.






	
exception Pyro5.errors.ConnectionClosedError

	The connection was unexpectedly closed.






	
exception Pyro5.errors.DaemonError

	The Daemon encountered a problem.






	
exception Pyro5.errors.MessageTooLargeError

	Pyro received a message or was trying to send a message that exceeds the maximum message size as configured.






	
exception Pyro5.errors.NamingError

	There was a problem related to the name server or object names.






	
exception Pyro5.errors.ProtocolError

	Pyro received a message that didn’t match the active Pyro network protocol, or there was a protocol related error.






	
exception Pyro5.errors.PyroError

	Generic base of all Pyro-specific errors.






	
exception Pyro5.errors.SecurityError

	A security related error occurred.






	
exception Pyro5.errors.SerializeError

	Something went wrong while (de)serializing data.






	
exception Pyro5.errors.TimeoutError

	A call could not be completed within the set timeout period,
or the network caused a timeout.






	
Pyro5.errors.excepthook(ex_type, ex_value, ex_tb)

	An exception hook you can use for sys.excepthook, to automatically print remote Pyro tracebacks






	
Pyro5.errors.format_traceback(ex_type=None, ex_value=None, ex_tb=None, detailed=False)

	Formats an exception traceback. If you ask for detailed formatting,
the result will contain info on the variables in each stack frame.
You don’t have to provide the exception info objects, if you omit them,
this function will obtain them itself using sys.exc_info().






	
Pyro5.errors.get_pyro_traceback(ex_type=None, ex_value=None, ex_tb=None)

	Returns a list of strings that form the traceback information of a
Pyro exception. Any remote Pyro exception information is included.
Traceback information is automatically obtained via sys.exc_info() if
you do not supply the objects yourself.








            

          

      

      

    

  

  
    
    

    Pyro5.nameserver — Pyro name server
    

    

    
 
  

    
      
          
            
  
Pyro5.nameserver — Pyro name server

Name Server and helper functions.


	
Pyro5.nameserver.start_ns(host=None, port=None, enableBroadcast=True, bchost=None, bcport=None, unixsocket=None, nathost=None, natport=None, storage=None)

	utility fuction to quickly get a Name server daemon to be used in your own event loops.
Returns (nameserverUri, nameserverDaemon, broadcastServer).






	
Pyro5.nameserver.start_ns_loop(host=None, port=None, enableBroadcast=True, bchost=None, bcport=None, unixsocket=None, nathost=None, natport=None, storage=None)

	utility function that starts a new Name server and enters its requestloop.






	
class Pyro5.nameserver.NameServer(storageProvider=None)

	Pyro name server. Provides a simple flat name space to map logical object names to Pyro URIs.
Default storage is done in an in-memory dictionary. You can provide custom storage types.


	
count()

	Returns the number of name registrations.






	
list(prefix=None, regex=None, return_metadata=False)

	Retrieve the registered items as a dictionary name-to-URI. The URIs in the resulting dict
are strings, not URI objects. You can filter by prefix or by regex.






	
lookup(name, return_metadata=False)

	Lookup the given name, returns an URI if found.
Returns tuple (uri, metadata) if return_metadata is True.






	
ping()

	A simple test method to check if the name server is running correctly.






	
register(name, uri, safe=False, metadata=None)

	Register a name with an URI. If safe is true, name cannot be registered twice.
The uri can be a string or an URI object. Metadata must be None, or a collection of strings.






	
remove(name=None, prefix=None, regex=None)

	Remove a registration. returns the number of items removed.






	
set_metadata(name, metadata)

	update the metadata for an existing registration






	
yplookup(meta_all=None, meta_any=None, return_metadata=True)

	Do a yellow-pages lookup for registrations that have all or any of the given metadata tags.
By default returns the actual metadata in the result as well.












            

          

      

      

    

  

  
    
    

    Pyro5.callcontext — Call context handling
    

    

    
 
  

    
      
          
            
  
Pyro5.callcontext — Call context handling

Deals with the context variables of a Pyro call.


	
Pyro5.callcontext.current_context = <Pyro5.callcontext._CallContext object>

	the thread-local context object for the current Pyro call








            

          

      

      

    

  

  
    
    

    Pyro5.protocol — Pyro wire protocol
    

    

    
 
  

    
      
          
            
  
Pyro5.protocol — Pyro wire protocol

The pyro wire protocol structures.

Pyro - Python Remote Objects.  Copyright by Irmen de Jong (irmen@razorvine.net).

Wire messages contains of a fixed size header, an optional set of annotation chunks,
and then the payload data. This class doesn’t deal with the payload data:
(de)serialization and handling of that data is done elsewhere.
Annotation chunks are only parsed.

The header format is:

0x00   4s  4   'PYRO' (message identifier)
0x04   H   2   protocol version
0x06   B   1   message type
0x07   B   1   serializer id
0x08   H   2   message flags
0x0a   H   2   sequence number   (to identify proper request-reply sequencing)
0x0c   I   4   data length   (max 4 Gb)
0x10   I   4   annotations length (max 4 Gb, total of all chunks, 0 if no annotation chunks present)
0x14   16s 16  correlation uuid
0x24   H   2   (reserved)
0x26   H   2   magic number 0x4dc5
total size: 0x28 (40 bytes)





After the header, zero or more annotation chunks may follow, of the format:

4s  4   annotation id (4 ASCII letters)
I   4   chunk length  (max 4 Gb)
B   x   annotation chunk databytes






	
class Pyro5.protocol.ReceivingMessage(header, payload=None)

	Wire protocol message that was received.


	
add_payload(payload)

	Parses (annotations processing) and adds payload data to a received message.






	
static validate(data)

	Checks if the message data looks like a valid Pyro message, if not, raise an error.










	
class Pyro5.protocol.SendingMessage(msgtype, flags, seq, serializer_id, payload, annotations=None)

	Wire protocol message that will be sent.


	
static ping(pyroConnection)

	Convenience method to send a ‘ping’ message and wait for the ‘pong’ response










	
Pyro5.protocol.log_wiredata(logger, text, msg)

	logs all the given properties of the wire message in the given logger






	
Pyro5.protocol.recv_stub(connection, accepted_msgtypes=None)

	Receives a pyro message from a given connection.
Accepts the given message types (None=any, or pass a sequence).
Also reads annotation chunks and the actual payload data.






	
MSG_*

	(int) The various message type identifiers






	
FLAGS_*

	(int) Various bitflags that specify the characteristics of the message, can be bitwise or-ed together








            

          

      

      

    

  

  
    
    

    Pyro5.socketutil — Socket related utilities
    

    

    
 
  

    
      
          
            
  
Pyro5.socketutil — Socket related utilities

Low level socket utilities.


	
class Pyro5.socketutil.SocketConnection(sock: socket, objectId: str = None, keep_open: bool = False)

	A wrapper class for plain sockets, containing various methods such as send() and recv()






	
Pyro5.socketutil.bind_unused_port(sock: socket, host: str | IPv4Address | IPv6Address = 'localhost') → int

	Bind the socket to a free port and return the port number.
This code is based on the code in the stdlib’s test.test_support module.






	
Pyro5.socketutil.create_bc_socket(bind: Tuple | str = None, reuseaddr: bool = False, timeout: float | None = -1, ipv6: bool = False) → socket

	Create a udp broadcast socket.
Set ipv6=True to create an IPv6 socket rather than IPv4.
Set ipv6=None to use the PREFER_IP_VERSION config setting.






	
Pyro5.socketutil.create_socket(bind: Tuple | str = None, connect: Tuple | str = None, reuseaddr: bool = False, keepalive: bool = True, timeout: float | None = -1, noinherit: bool = False, ipv6: bool = False, nodelay: bool = True, sslContext: SSLContext = None) → socket

	Create a socket. Default socket options are keepalive and IPv4 family, and nodelay (nagle disabled).
If ‘bind’ or ‘connect’ is a string, it is assumed a Unix domain socket is requested.
Otherwise, a normal tcp/ip socket tuple (addr, port, …) is used.
Set ipv6=True to create an IPv6 socket rather than IPv4.
Set ipv6=None to use the PREFER_IP_VERSION config setting.






	
Pyro5.socketutil.find_probably_unused_port(family: int = AddressFamily.AF_INET, socktype: int = SocketKind.SOCK_STREAM) → int

	Returns an unused port that should be suitable for binding (likely, but not guaranteed).
This code is copied from the stdlib’s test.test_support module.






	
Pyro5.socketutil.get_interface(ip_address: str | IPv4Address | IPv6Address) → IPv4Interface | IPv6Interface

	tries to find the network interface that connects to the given host’s address






	
Pyro5.socketutil.get_ip_address(hostname: str, workaround127: bool = False, version: int = None) → IPv4Address | IPv6Address

	Returns the IP address for the given host. If you enable the workaround,
it will use a little hack if the ip address is found to be the loopback address.
The hack tries to discover an externally visible ip address instead (this only works for ipv4 addresses).
Set ipVersion=6 to return ipv6 addresses, 4 to return ipv4, 0 to let OS choose the best one or None to use config.PREFER_IP_VERSION.






	
Pyro5.socketutil.get_ssl_context(servercert: str = '', serverkey: str = '', clientcert: str = '', clientkey: str = '', cacerts: str = '', keypassword: str = '') → SSLContext

	creates an SSL context and caches it, so you have to set the parameters correctly before doing anything






	
Pyro5.socketutil.interrupt_socket(address: Tuple[str, int]) → None

	bit of a hack to trigger a blocking server to get out of the loop, useful at clean shutdowns






	
Pyro5.socketutil.receive_data(sock: socket, size: int) → bytes

	Retrieve a given number of bytes from a socket.
It is expected the socket is able to supply that number of bytes.
If it isn’t, an exception is raised (you will not get a zero length result
or a result that is smaller than what you asked for). The partial data that
has been received however is stored in the ‘partialData’ attribute of
the exception object.






	
Pyro5.socketutil.send_data(sock: socket, data: bytes) → None

	Send some data over a socket.
Some systems have problems with sendall() when the socket is in non-blocking mode.
For instance, Mac OS X seems to be happy to throw EAGAIN errors too often.
This function falls back to using a regular send loop if needed.






	
Pyro5.socketutil.set_keepalive(sock: socket) → None

	sets the SO_KEEPALIVE option on the socket, if possible.






	
Pyro5.socketutil.set_nodelay(sock: socket) → None

	sets the TCP_NODELAY option on the socket (to disable Nagle’s algorithm), if possible.






	
Pyro5.socketutil.set_noinherit(sock: socket) → None

	Mark the given socket fd as non-inheritable to child processes






	
Pyro5.socketutil.set_reuseaddr(sock: socket) → None

	sets the SO_REUSEADDR option on the socket, if possible.








            

          

      

      

    

  

  
    
    

    Pyro5.compatibility.Pyro4 — Pyro4 backward compatibility layer
    

    

    
 
  

    
      
          
            
  
Pyro5.compatibility.Pyro4 — Pyro4 backward compatibility layer

An effort to provide a backward-compatible Pyro4 API layer,
to make porting existing code from Pyro4 to Pyro5 easier.

This only works for code that imported Pyro4 symbols from the Pyro4 module
directly, instead of from one of Pyro4’s sub modules. So, for instance:
from Pyro4 import Proxy  instead of:  from Pyro4.core import Proxy

some submodules are more or less emulated such as Pyro4.errors, Pyro4.socketutil.

So, you may first have to convert your old code to use the importing scheme to
only import the Pyro4 module and not from its submodules, and then you should
insert this at the top to enable the compatibility layer:
from Pyro5.compatibility import Pyro4


	
class Pyro5.compatibility.Pyro4.Daemon(host=None, port=0, unixsocket=None, nathost=None, natport=None, interface=<class 'Pyro5.server.DaemonObject'>, connected_socket=None)

	




	
class Pyro5.compatibility.Pyro4.Proxy(uri, connected_socket=None)

	




	
class Pyro5.compatibility.Pyro4.URI(uri)

	




	
Pyro5.compatibility.Pyro4.behavior(instance_mode: str = 'session', instance_creator: Callable | None = None) → Callable

	Decorator to specify the server behavior of your Pyro class.






	
Pyro5.compatibility.Pyro4.callback(method: Callable) → Callable

	decorator to mark a method to be a ‘callback’. This will make Pyro
raise any errors also on the callback side, and not only on the side
that does the callback call.






	
Pyro5.compatibility.Pyro4.expose(method_or_class: _T) → _T

	Decorator to mark a method or class to be exposed for remote calls.
You can apply it to a method or a class as a whole.
If you need to change the default instance mode or instance creator, also use a @behavior decorator.






	
Pyro5.compatibility.Pyro4.oneway(method: Callable) → Callable

	decorator to mark a method to be oneway (client won’t wait for a response)








            

          

      

      

    

  

  
    
    

    Pyro5.utils.echoserver — Built-in echo server for testing purposes
    

    

    
 
  

    
      
          
            
  
Pyro5.utils.echoserver — Built-in echo server for testing purposes

Echo server for test purposes.
This is usually invoked by starting this module as a script:


python -m Pyro5.test.echoserver
or simply: pyro5-test-echoserver




It is also possible to use the EchoServer in user code
but that is not terribly useful.


	
class Pyro5.utils.echoserver.EchoServer

	The echo server object that is provided as a Pyro object by this module.
If its verbose attribute is set to True, it will print messages as it receives calls.


	
echo(message)

	return the message






	
error()

	generates a simple exception without text






	
error_with_text()

	generates a simple exception with message






	
generator()

	a generator function that returns some elements on demand






	
oneway_echo(message)

	just like echo, but oneway; the client won’t wait for response






	
oneway_slow()

	prints a message after a certain delay, and returns; but the client won’t wait for it






	
shutdown()

	called to signal the echo server to shut down






	
slow()

	returns (and prints) a message after a certain delay












            

          

      

      

    

  

  
    
    

    Pyro5.utils.httpgateway — HTTP to Pyro gateway
    

    

    
 
  

    
      
          
            
  
Pyro5.utils.httpgateway — HTTP to Pyro gateway

HTTP gateway: connects the web browser’s world of javascript+http and Pyro.
Creates a stateless HTTP server that essentially is a proxy for the Pyro objects behind it.
It exposes the Pyro objects through a HTTP interface and uses the JSON serializer,
so that you can immediately process the response data in the browser.

You can start this module as a script from the command line, to easily get a
http gateway server running:


python -m Pyro5.utils.httpgateway
or simply: pyro5-httpgateway




It is also possible to import the ‘pyro_app’ function and stick that into a WSGI
server of your choice, to have more control.

The javascript code in the web page of the gateway server works with the same-origin
browser policy because it is served by the gateway itself. If you want to access it
from scripts in different sites, you have to work around this or embed the gateway app
in your site. Non-browser clients that access the http api have no problems.
See the http example for two of such clients (node.js and python).


	
Pyro5.utils.httpgateway.pyro_app(environ, start_response)

	The WSGI app function that is used to process the requests.
You can stick this into a wsgi server of your choice, or use the main() method
to use the default wsgiref server.








            

          

      

      

    

  

  
    
    

    Socket server API contract
    

    

    
 
  

    
      
          
            
  
Socket server API contract

For now, this is an internal API, used by the Pyro Daemon.
The various servers in Pyro5.socketserver implement this.


	
class SocketServer_API

	Methods:


	
init(daemon, host, port, unixsocket=None)

	Must bind the server on the given host and port (can be None).
daemon is the object that will receive Pyro invocation calls (see below).
When host or port is None, the server can select something appropriate itself.
If possible, use Pyro4.config.COMMTIMEOUT on the sockets (see Pyro5.config — Configuration items).
Set self.sock to the daemon server socket.
If unixsocket is given the name of a Unix domain socket, that type of socket
will be created instead of a regular tcp/ip socket.






	
loop(loopCondition)

	Start an endless loop that serves Pyro requests.
loopCondition is an optional function that is called every iteration,
if it returns False, the loop is terminated and this method returns.






	
events(eventsockets)

	Called from external event loops: let the server handle events that occur on one of the sockets of this server.
eventsockets is a sequence of all the sockets for which an event occurred.






	
shutdown()

	Initiate shutdown of a running socket server, and close it.






	
close()

	Release resources and close a stopped server. It can no longer be used after calling this,
until you call initServer again.






	
wakeup()

	This is called to wake up the requestLoop() if it is in a blocking state.





Properties:


	
sockets

	must be the list of all sockets used by this server (server socket + all connected client sockets)






	
sock

	must be the server socket itself.






	
locationStr

	must be a string of the form "serverhostname:serverport"
can be different from the host:port arguments passed to initServer.
because either of those can be None and the server will choose something appropriate.
If the socket is a Unix domain socket, it should be of the form "./u:socketname".












            

          

      

      

    

  

  
    
    

    Pyrolite - client library for Java and .NET
    

    

    
 
  

    
      
          
            
  
Pyrolite - client library for Java and .NET

This library allows your Java or .NET program to interface very easily with
the Python world. It uses the Pyro protocol to call methods on remote
objects.

https://github.com/irmen/Pyrolite

The 5.x version works with Pyro5.
(Use the 4.x version for Pyro4).




            

          

      

      

    

  

  
    
    

    Change Log
    

    

    
 
  

    
      
          
            
  
Change Log

Pyro 5.15


	removed Python 3.7 from the support list (it is EOL). Now supported on Python 3.8 or newer.


	fixed cgi.parse deprecation problem in http gateway


	removed jquery dependency in http gateway


	some small tweaks to setup, tests, examples, and docs.


	updated the self-signed example certificates and serial numbers in the ssl example.




Pyro 5.14


	http gateway now also has OPTION call with CORS


	fixed deprecation warning about setting threads in daemon mode


	fixed more threading module deprecation warnings


	proxy now correctly exposes remote __len__, __iter__ and __getitem__ etc


	improved type hint for expose()


	added Proxy._pyroLocalSocket property that is the local socket address used in the proxy.


	serve() no longer defaults host parameter to empty string, but None. To be more similar to what a creation of Daemon() normally does.


	fixed a Python 3.11 serialization issue




Pyro 5.13.1


	fixed @expose issue on static method/classmethod due to API change in Python 3.10




Pyro 5.13


	removed Python 3.6 from the support list (it is EOL). Now supported on Python 3.7 or newer


	corrected documentation about autoproxy: this feature is not configurable, it is always active.


	introduced SERPENT_BYTES_REPR config item (and updated serpent library version requirement for this)


	flush nameserver output to console before entering request loop


	added optional boolean “weak” parameter to Daemon.register(), to register a weak reference to the server object
that will be unregistered automatically when the server object gets deleted.


	switched from travis to using github actions for CI builds and tests




Pyro 5.12


	fixed error when import Pyro5.server   (workaround was to import Pyro5.core before it)


	documented SSL_CACERTS config item


	removed Python 3.5 from the support list (it is EOL). Now requires Python 3.6 or newer




Pyro 5.11


	reworked the timezones example. (it didn’t work as intended)


	httpgateway message data bytearray type fix


	fixed ipv6 error in filetransfer example


	added methodcall_error_handler in documentation




Pyro 5.10


	finally ported over the unit test suite from Pyro4


	finally updated the documentation from Pyro4 to Pyro5 (there’s likely still some errors or omissions though)


	fixed regex lookup index error in nameserver


	the 4 custom class (un)register methods on the SerializerBase class are now also directly available in the api module




Pyro 5.9.2


	fixed a silent error in the server when doing error handling (avoid calling getpeername() which may fail)
this issue could cause a method call to not being executed in a certain specific scenario.
(oneway call on MacOS when using unix domain sockets). Still, it’s probably wise to upgrade as
this was a regression since version 5.8.




Pyro 5.9.1


	fixed some circular import conflicts


	fixed empty nameserver host lookup issue




Pyro 5.9


	added privilege-separation example


	added methodcall_error_handler to Daemon that allows you to provide a custom error handler,
which is called when an exception occurs in the method call’s user code


	introduced api.serve / server.serve as a replacement for the static class method Daemon.serveSimple


	fix possible race condition when creating instances with instancemode “single”


	introduced some more type hintings




Pyro 5.8


	cython compatibility fix


	removed explicit version checks of dependencies such as serpent.
This fixes crash error when dealing with prerelease versions that didn’t match the pattern.




Pyro 5.7


	fixed possible attribute error in proxy del method at interpreter shutdown


	gave the serialization example a clearer name ‘custom-serialization’


	added NS_LOOKUP_DELAY config item and parameter to resolve()
to have an optional wait delay until a name becomes available in the nameserver


	added lookup() and yplookup() utility functions that implement this retry mechanism




Pyro 5.6


	improved and cleaned up exception handling throughout the code base


	URIs now accept spaces in the location part. This is useful for unix domain sockets.




Pyro 5.5


	made msgpack serializer optional


	Anaconda ‘pyro5’ package created




Pyro 5.4


	made the decision that Pyro5 will require Python 3.5 or newer, and won’t support Python 2.7 (which will be EOL in january 2020)


	begun making Pyro5 specific documentation instead of referring to Pyro4


	tox tests now include Python 3.8 as well (because 3.8 beta was released recently)


	dropped support for Python 3.4 (which has reached end-of-life status). Supported Python versions are now 2.7, and 3.5 or newer.
(the life cycle status of the Python versions can be seen here https://devguide.python.org/#status-of-python-branches)


	code cleanups, removing some old compatibility stuff etc.




Pyro 5.3

various things ported over from recent Pyro4 changes:


	added a few more methods to the ‘private’ list


	fix thread server worker thread name


	on windows, the threaded server can now also be stopped with ctrl-c (sigint)


	NATPORT behavior fix when 0


	source dist archive is more complete now


	small fix for cython




Pyro 5.2


	travis CI python3.7 improvements


	serialization improvements/fixes


	reintroduced config object to make a possibility for a non-static (non-global) pyro configuration




Pyro 5.1


	python 3.5 or newer is now required


	socketutil module tweaks and cleanups


	added a bunch of tests, taken from pyro4 mostly, for the socketutil module


	moved to declarative setup.cfg rather than in setup.py


	made sure the license is included in the distribution




Pyro 5.0


	first public release







            

          

      

      

    

  

  
    
    

    Software License and Disclaimer
    

    

    
 
  

    
      
          
            
  
Software License and Disclaimer

Pyro - Python Remote Objects - version 5.x - Copyright (c) by Irmen de Jong (irmen@razorvine.net).

Pyro is licensed under the MIT Software License [http://www.opensource.org/licenses/mit-license.php]:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


[image: PYYYRRRROOOO]
 [http://wiki.teamfortress.com/wiki/Pyro]
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index



 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 


Symbols


  	
      	
    --bchost

      
        	Pyro5.nameserver command line option


      


      	
    --bcport

      
        	Pyro5.nameserver command line option


      


      	
    --help

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


        	Pyro5.utils.echoserver command line option


        	Pyro5.utils.httpgateway command line option


      


      	
    --host

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


      


      	
    --nathost

      
        	Pyro5.nameserver command line option


      


      	
    --natport

      
        	Pyro5.nameserver command line option


      


      	
    --nobc

      
        	Pyro5.nameserver command line option


      


      	
    --port

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


      


      	
    --storage

      
        	Pyro5.nameserver command line option


      


      	
    --unixsocket

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


      


      	
    --verbose

      
        	Pyro5.nsc command line option


      


  

  	
      	
    -h

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


        	Pyro5.utils.echoserver command line option


        	Pyro5.utils.httpgateway command line option


      


      	
    -n

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


      


      	
    -p

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


      


      	
    -s

      
        	Pyro5.nameserver command line option


      


      	
    -u

      
        	Pyro5.nameserver command line option


        	Pyro5.nsc command line option


      


      	
    -v

      
        	Pyro5.nsc command line option


      


      	
    -x

      
        	Pyro5.nameserver command line option


      


      	.NET


      	127.0.0.1


      	2-way-SSL


      	@Pyro5.api.callback


      	
    @Pyro5.api.oneway

      
        	client handling


      


      	@Pyro5.server.behavior


      	@Pyro5.server.expose


      	@Pyro5.server.oneway


  





_


  	
      	__call__() (batchproxy method)


      	_pyroBind() (Pyro5.api.Proxy method)

      
        	(Pyro5.client.Proxy method)


      


      	_pyroHandshake (Pyro5.api.Proxy attribute)

      
        	(Pyro5.client.Proxy attribute)


      


      	_pyroLocalSocket (Pyro5.api.Proxy attribute)

      
        	(Pyro5.client.Proxy attribute)


      


      	_pyroMaxRetries (Pyro5.api.Proxy attribute)

      
        	(Pyro5.client.Proxy attribute)


      


  

  	
      	_pyroReconnect() (Pyro5.api.Proxy method)

      
        	(Pyro5.client.Proxy method)


      


      	_pyroRelease() (Pyro5.api.Proxy method)

      
        	(Pyro5.client.Proxy method)


      


      	_pyroSerializer (Pyro5.api.Proxy attribute)

      
        	(Pyro5.client.Proxy attribute)


      


      	_pyroTimeout (Pyro5.api.Proxy attribute)

      
        	(Pyro5.client.Proxy attribute)


      


      	_pyroValidateHandshake() (Pyro5.api.Proxy method)

      
        	(Pyro5.client.Proxy method)


      


  





A


  	
      	add_payload() (Pyro5.protocol.ReceivingMessage method)


      	annotations

      
        	(Pyro5.current_context attribute)


      


      	annotations() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


  

  	
      	attributes added to Pyro objects


      	
    automatic

      
        	reconnecting


      


      	automatic proxying


  





B


  	
      	batch calls


      	BatchProxy (class in Pyro5.api)

      
        	(class in Pyro5.client)


      


      	behavior() (in module Pyro5.api)

      
        	(in module Pyro5.compatibility.Pyro4)


        	(in module Pyro5.server)


      


      	benchmark


      	Best practices


  

  	
      	binary blob

      
        	
    see also binary data transfer


      


      	binary data transfer


      	bind_unused_port() (in module Pyro5.socketutil)


      	
    broadcast lookup

      
        	name server


      


      	
    built-in function

      
        	Daemon()


        	locate_ns()


      


  





C


  	
      	C#


      	callback

      
        	decorator


      


      	callback() (in module Pyro5.api)

      
        	(in module Pyro5.compatibility.Pyro4)


        	(in module Pyro5.server)


      


      	
    calling methods

      
        	Proxy


      


      	calling remote objects


      	certificate verification


      	class_to_dict() (Pyro5.api.SerializerBase class method)


      	
    cleaning up

      
        	Proxy


        	Pyro daemon


      


      	client (Pyro5.current_context attribute)


      	client code


      	
    client handling

      
        	@Pyro5.api.oneway


      


      	
    client method call

      
        	oneway


      


      	client_sock_addr (Pyro5.current_context attribute)


      	clientDisconnect() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	close() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


        	(SocketServer_API method)


      


      	combine() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	Combining Daemons


  

  	
      	
    command line

      
        	configuration check


        	echo server


        	HTTP gateway server


        	name server


      


      	command line tools


      	CommunicationError


      	
    concepts and tools

      
        	tutorial


      


      	concurrency model


      	configuration

      
        	environment variables


      


      	
    configuration check

      
        	command line


      


      	configuration items

      
        	logging


        	name server


      


      	connection refused


      	ConnectionClosedError


      	correlation_id

      
        	(Pyro5.current_context attribute)


      


      	count() (Pyro5.nameserver.NameServer method)


      	create_bc_socket() (in module Pyro5.socketutil)


      	create_socket() (in module Pyro5.socketutil)


      	
    creating a daemon

      
        	Pyro daemon


      


      	current config


      	current_context

      
        	(in module Pyro5.callcontext)


      


  





D


  	
      	
    Daemon

      
        	Metadata


      


      	Daemon (class in Pyro5.api)

      
        	(class in Pyro5.compatibility.Pyro4)


        	(class in Pyro5.server)


      


      	Daemon API


      	
    Daemon()

      
        	built-in function


      


      	DaemonError


      	DaemonObject (class in Pyro5.api)

      
        	(class in Pyro5.server)


      


      	
    decorator

      
        	callback


        	expose


        	oneway


      


  

  	
      	decorators


      	deserialization


      	deserialized() (Pyro5.api.SerializedBlob method)

      
        	(Pyro5.client.SerializedBlob method)


      


      	deserializing custom classes


      	dict_to_class() (Pyro5.api.SerializerBase class method)


      	
    different user id

      
        	security


      


      	disclaimer


      	dispatcher


      	DNS


      	
    dotted names

      
        	security


      


  





E


  	
      	
    echo server

      
        	command line


      


      	echo()

      
        	(Pyro5.utils.echoserver.EchoServer method)


      


      	EchoServer (class in Pyro5.utils.echoserver)


      	
    encryption

      
        	security


      


      	
    environment variables

      
        	configuration


        	security


      


      	error handling


      	error()

      
        	(Pyro5.utils.echoserver.EchoServer method)


      


      	error_with_text() (Pyro5.utils.echoserver.EchoServer method)


  

  	
      	
    event loop

      
        	integrate Pyro's requestLoop


      


      	events() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


        	(SocketServer_API method)


      


      	example


      	excepthook() (in module Pyro5.errors)


      	exception hook


      	exception in callback


      	exceptions


      	
    expose

      
        	decorator


      


      	expose() (in module Pyro5.api)

      
        	(in module Pyro5.compatibility.Pyro4)


        	(in module Pyro5.server)


      


  





F


  	
      	failed to locate the nameserver


      	features


      	file transfer


  

  	
      	find_probably_unused_port() (in module Pyro5.socketutil)


      	firewall


      	format_traceback() (in module Pyro5.errors)


  





G


  	
      	gateway


      	generator() (Pyro5.utils.echoserver.EchoServer method)


      	get_interface() (in module Pyro5.socketutil)


      	get_ip_address() (in module Pyro5.socketutil)


  

  	
      	get_metadata() (Pyro5.api.DaemonObject method)

      
        	(Pyro5.server.DaemonObject method)


      


      	get_pyro_traceback() (in module Pyro5.errors)


      	get_ssl_context() (in module Pyro5.socketutil)


  





H


  	
      	handleRequest() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	handshake


  

  	
      	housekeeping() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	
    HTTP gateway server

      
        	command line


      


  





I


  	
      	info() (Pyro5.api.DaemonObject method)

      
        	(Pyro5.server.DaemonObject method)


      


      	init() (SocketServer_API method)


      	installing Pyro

      
        	obtaining Pyro


        	requirements for Pyro


      


      	
    instance modes

      
        	instance_creator


        	instance_mode


      


  

  	
      	
    integrate Pyro's requestLoop

      
        	event loop


      


      	interrupt_socket() (in module Pyro5.socketutil)


      	IP address


      	IPv6


      	isUnixsockLocation() (Pyro5.api.URI static method)

      
        	(Pyro5.core.URI static method)


      


  





J


  	
      	Java


  

  	
      	
    json

      
        	serialization


      


  





L


  	
      	license


      	list() (Pyro5.nameserver.NameServer method)


      	localhost


      	
    locate_ns()

      
        	built-in function


      


      	locate_ns() (in module Pyro5.api)

      
        	(in module Pyro5.core)


      


      	
    locating the name server

      
        	name server


      


      	location

      
        	(Pyro5.api.URI property)


        	(Pyro5.core.URI property)


      


  

  	
      	locationStr (Pyro5.api.Daemon attribute)

      
        	(Pyro5.server.Daemon attribute)


        	(SocketServer_API attribute)


      


      	log_wiredata() (in module Pyro5.protocol)


      	Logging


      	
    logging

      
        	configuration items


      


      	lookup() (Pyro5.nameserver.NameServer method)


      	loop() (SocketServer_API method)


  





M


  	
      	
    marshal

      
        	serialization


      


      	MessageTooLargeError


      	
    Metadata

      
        	Daemon


        	name server


      


      	misc features


      	
    module

      
        	Pyro5.api


        	Pyro5.callcontext


        	Pyro5.client


        	Pyro5.compatibility.Pyro4


        	Pyro5.core


        	Pyro5.errors


        	Pyro5.nameserver


        	Pyro5.protocol


        	Pyro5.server


        	Pyro5.socketutil


        	Pyro5.utils.echoserver


        	Pyro5.utils.httpgateway


      


  

  	
      	msg_flags (Pyro5.current_context attribute)


      	
    msgpack

      
        	serialization


      


      	multiple NICs


      	
    multiplex

      
        	server type


      


  





N


  	
      	Name Server


      	
    name server

      
        	broadcast lookup


        	command line


        	configuration items


        	locating the name server


        	Metadata


        	name server control


        	registering objects


        	unregistering objects


        	Yellow-pages


      


  

  	
      	Name Server API


      	
    name server control

      
        	name server


      


      	NameServer (class in Pyro5.nameserver)


      	NamingError


      	NAT


      	network adapter binding


      	network interfaces

      
        	security


      


      	Numpy


      	numpy.ndarray


  





O


  	
      	object discovery


      	object graphs


      	object name


      	object serialization


      	
    object traversal

      
        	security


      


      	
    obtaining Pyro

      
        	installing Pyro


      


  

  	
      	
    oneway

      
        	client method call


        	decorator


      


      	oneway decorator


      	oneway() (in module Pyro5.api)

      
        	(in module Pyro5.compatibility.Pyro4)


        	(in module Pyro5.server)


      


      	oneway_echo() (Pyro5.utils.echoserver.EchoServer method)


      	oneway_slow() (Pyro5.utils.echoserver.EchoServer method)


  





P


  	
      	performance


      	ping() (Pyro5.api.DaemonObject method)

      
        	(Pyro5.nameserver.NameServer method)


        	(Pyro5.protocol.SendingMessage static method)


        	(Pyro5.server.DaemonObject method)


      


      	private methods


      	ProtocolError


      	
    Proxy

      
        	calling methods


        	cleaning up


        	remote attributes


      


      	Proxy (class in Pyro5.api)

      
        	(class in Pyro5.client)


        	(class in Pyro5.compatibility.Pyro4)


      


      	proxy sharing


      	proxyFor() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	publishing objects


      	publishing objects oneliner


      	
    Pyro daemon

      
        	cleaning up


        	creating a daemon


        	registering objects/classes


        	shutdown


        	unregistering objects


      


      	PYRO protocol type


      	pyro5-check-config


      	
    Pyro5.api

      
        	module


      


      	
    Pyro5.callcontext

      
        	module


      


      	
    Pyro5.client

      
        	module


      


      	
    Pyro5.compatibility.Pyro4

      
        	module


      


      	
    Pyro5.core

      
        	module


      


      	
    Pyro5.errors

      
        	module


      


      	
    Pyro5.nameserver

      
        	module


      


      	
    Pyro5.nameserver command line option

      
        	--bchost


        	--bcport


        	--help


        	--host


        	--nathost


        	--natport


        	--nobc


        	--port


        	--storage


        	--unixsocket


        	-h


        	-n


        	-p


        	-s


        	-u


        	-x


      


  

  	
      	
    Pyro5.nsc command line option

      
        	--help


        	--host


        	--port


        	--unixsocket


        	--verbose


        	-h


        	-n


        	-p


        	-u


        	-v


      


      	
    Pyro5.protocol

      
        	module


      


      	
    Pyro5.server

      
        	module


      


      	
    Pyro5.socketutil

      
        	module


      


      	
    Pyro5.utils.echoserver

      
        	module


      


      	
    Pyro5.utils.echoserver command line option

      
        	--help


        	-h


      


      	
    Pyro5.utils.httpgateway

      
        	module


      


      	
    Pyro5.utils.httpgateway command line option

      
        	--help


        	-h


      


      	pyro_app() (in module Pyro5.utils.httpgateway)


      	PyroError


      	Pyrolite


      	PYROMETA protocol type


      	PYRONAME protocol type, [1]


  





R


  	
      	receive_data() (in module Pyro5.socketutil)


      	ReceivingMessage (class in Pyro5.protocol)


      	
    reconnecting

      
        	automatic


      


      	recv_stub() (in module Pyro5.protocol)


      	register()

      
        	(Daemon method)


        	(Pyro5.api.Daemon method)


        	(Pyro5.nameserver.NameServer method)


        	(Pyro5.server.Daemon method)


      


      	register_class_to_dict() (in module Pyro5.api)

      
        	(Pyro5.api.SerializerBase class method)


      


      	register_dict_to_class() (in module Pyro5.api)

      
        	(Pyro5.api.SerializerBase class method)


      


      	registered() (Pyro5.api.DaemonObject method)

      
        	(Pyro5.server.DaemonObject method)


      


      	
    registering objects

      
        	name server


      


      	
    registering objects/classes

      
        	Pyro daemon


      


      	release proxy connection


      	releasing a proxy


  

  	
      	
    remote attributes

      
        	Proxy


      


      	remote errors


      	remote iterators/generators


      	remote traceback


      	remove() (Pyro5.nameserver.NameServer method)


      	request loop


      	requestLoop() (Daemon method)

      
        	(Pyro5.api.Daemon method)


        	(Pyro5.server.Daemon method)


      


      	
    requirements for Pyro

      
        	installing Pyro


      


      	reset config to default


      	reset() (Pyro5.config method)


      	resetMetadataCache() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	resolve() (in module Pyro5.api)

      
        	(in module Pyro5.core)


      


      	resolving object names


      	resource-tracking


      	response_annotations (Pyro5.current_context attribute)


      	router


  





S


  	
      	scaling Name Server connections


      	security

      
        	different user id


        	dotted names


        	encryption


        	environment variables


        	network interfaces


        	object traversal


      


      	SecurityError


      	selector (Pyro5.api.Daemon property)

      
        	(Pyro5.server.Daemon property)


      


      	send_data() (in module Pyro5.socketutil)


      	SendingMessage (class in Pyro5.protocol)


      	seq (Pyro5.current_context attribute)


      	
    serialization

      
        	json


        	marshal


        	msgpack


        	serpent


        	server


      


      	SerializedBlob (class in Pyro5.api)

      
        	(class in Pyro5.client)


      


      	SerializeError


      	SERIALIZER


      	serializer_id (Pyro5.current_context attribute)


      	SerializerBase (class in Pyro5.api)


      	serializing custom classes


      	
    serpent

      
        	serialization


      


      	serve


      	serve()

      
        	(in module Pyro5.api)


        	(in module Pyro5.server)


      


      	
    server

      
        	serialization


      


      	server code


  

  	
      	
    server type

      
        	multiplex


        	threaded


        	what to choose?


      


      	server types


      	SERVERTYPE


      	serveSimple() (Pyro5.api.Daemon static method)

      
        	(Pyro5.server.Daemon static method)


      


      	set_keepalive() (in module Pyro5.socketutil)


      	set_metadata() (Pyro5.nameserver.NameServer method)


      	set_nodelay() (in module Pyro5.socketutil)


      	set_noinherit() (in module Pyro5.socketutil)


      	set_reuseaddr() (in module Pyro5.socketutil)


      	
    shutdown

      
        	Pyro daemon


      


      	shutdown()

      
        	(Pyro5.api.Daemon method)


        	(Pyro5.server.Daemon method)


        	(Pyro5.utils.echoserver.EchoServer method)


        	(SocketServer_API method)


      


      	slow() (Pyro5.utils.echoserver.EchoServer method)


      	sock (Pyro5.api.Daemon property)

      
        	(Pyro5.server.Daemon property)


        	(SocketServer_API attribute)


      


      	SocketConnection (class in Pyro5.socketutil)


      	socketpair


      	sockets (Pyro5.api.Daemon property)

      
        	(Pyro5.server.Daemon property)


        	(SocketServer_API attribute)


      


      	SocketServer_API (built-in class)


      	software license


      	SSL


      	start_ns() (in module Pyro5.api)

      
        	(in module Pyro5.nameserver)


      


      	start_ns_loop() (in module Pyro5.api)

      
        	(in module Pyro5.nameserver)


      


      	starting the name server


  





T


  	
      	
    threaded

      
        	server type


      


      	TimeoutError


      	timeouts


      	Tips & trics


      	TLS


  

  	
      	traceback information


      	track_resource() (Pyro5.current_context method)


      	tutorial, [1]

      
        	concepts and tools


      


      	type_meta() (in module Pyro5.api)

      
        	(in module Pyro5.core)


      


  





U


  	
      	unregister() (Daemon method)

      
        	(Pyro5.api.Daemon method)


        	(Pyro5.server.Daemon method)


      


      	unregister_class_to_dict() (in module Pyro5.api)

      
        	(Pyro5.api.SerializerBase class method)


      


      	unregister_dict_to_class() (in module Pyro5.api)

      
        	(Pyro5.api.SerializerBase class method)


      


      	
    unregistering objects

      
        	name server


        	Pyro daemon


      


  

  	
      	untrack_resource() (Pyro5.current_context method)


      	upgrading from Pyro4


      	URI (class in Pyro5.api)

      
        	(class in Pyro5.compatibility.Pyro4)


        	(class in Pyro5.core)


      


      	uriFor() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


      	usage


      	user provided sockets


  





V


  	
      	validate() (Pyro5.protocol.ReceivingMessage static method)


  

  	
      	validateHandshake() (Pyro5.api.Daemon method)

      
        	(Pyro5.server.Daemon method)


      


  





W


  	
      	wakeup() (SocketServer_API method)


      	what is Pyro


  

  	
      	
    what to choose?

      
        	server type


      


      	wire protocol version


  





Y


  	
      	
    Yellow-pages

      
        	name server


      


  

  	
      	yplookup() (Pyro5.nameserver.NameServer method)


  







            

          

      

      

    

  
_images/pyro-large.png





_images/tf_pyrotaunt.png





nav.xhtml

    
      Table of Contents


      
        		
          Pyro - Python Remote Objects - 5.15
        


        		
          Intro and Example
          
            		
              Features
            


            		
              What can you use Pyro for?
            


            		
              Upgrading from Pyro4
              
                		
                  What has been changed since Pyro4
                


              


            


            		
              Simple Example
              
                		
                  With a name server
                


                		
                  Other means of creating connections
                


              


            


            		
              Performance
            


          


        


        		
          Installing Pyro
          
            		
              Compatibility
            


            		
              Obtaining and installing Pyro
            


            		
              Third party libraries that Pyro5 uses
            


            		
              Interesting stuff that is extra in the source distribution archive and not with packaged versions
            


          


        


        		
          Tutorial
          
            		
              Warm-up
            


            		
              Pyro concepts and tools
              
                		
                  Key concepts
                


                		
                  Starting a name server
                


                		
                  Interacting with the name server
                


              


            


            		
              Not using the Name server
            


            		
              Tutorial examples
            


          


        


        		
          Command line tools
          
            		
              Test echo server
              
                		
                  echo()
                


                		
                  error()
                


                		
                  shutdown()
                


              


            


            		
              Configuration check
            


          


        


        		
          Clients: Calling remote objects
          
            		
              Object discovery
            


            		
              Calling methods
            


            		
              Accessing remote attributes
            


            		
              Serialization
              
                		
                  Customizing serialization
                


              


            


            		
              Proxies, connections, threads and cleaning up
            


            		
              Oneway calls
            


            		
              Batched calls
              
                		
                  batchproxy.__call__()
                


              


            


            		
              Remote iterators/generators
            


            		
              Pyro Callbacks
            


            		
              Miscellaneous features
              
                		
                  Error handling
                


                		
                  Timeouts
                


                		
                  Automatic reconnecting
                


                		
                  Proxy sharing between threads
                


                		
                  Metadata from the daemon
                


              


            


          


        


        		
          Servers: hosting Pyro objects
          
            		
              Creating a Pyro class and exposing its methods and properties
            


            		
              Exposing classes and methods without changing existing source code
            


            		
              Pyro Daemon: publishing Pyro objects
              
                		
                  Oneliner Pyro object publishing: Pyro5.server.serve()
                


                		
                  Creating a Daemon
                


                		
                  Registering objects/classes
                


                		
                  Unregistering objects
                


                		
                  Running the request loop
                


                		
                  Integrating Pyro in your own event loop
                


                		
                  Combining Daemon request loops
                


                		
                  Cleaning up
                


              


            


            		
              Controlling Instance modes and Instance creation
            


            		
              Autoproxying
            


            		
              Server types and Concurrency model
            


            		
              Serialization
            


            		
              Other features
              
                		
                  Attributes added to Pyro objects
                


                		
                  Network adapter binding and localhost
                


                		
                  Cleaning up / disconnecting stale client connections
                


                		
                  Daemon Pyro interface
                


                		
                  Intercepting errors in user code executed in a method call
                


              


            


          


        


        		
          Name Server
          
            		
              Starting the Name Server
            


            		
              Starting the Name Server from within your own code
            


            		
              Configuration items
            


            		
              Name server control tool
            


            		
              Locating the Name Server and using it in your code
              
                		
                  locate_ns()
                


              


            


            		
              The PYRONAME protocol type
            


            		
              The PYROMETA protocol type
            


            		
              Resolving object names
            


            		
              Registering object names
              
                		
                  register()
                


              


            


            		
              Free connections to the NS quickly
            


            		
              Yellow-pages ability of the Name Server (metadata tags)
            


            		
              Other methods in the Name Server API
            


          


        


        		
          Security
          
            		
              Network interface binding
            


            		
              Running Pyro servers with different credentials/user id
            


            		
              Secure communication via SSL/TLS
            


            		
              Dotted names (object traversal)
            


            		
              Environment variables overriding config items
            


            		
              Preventing arbitrary connections
              
                		
                  …by using 2-way-SSL and certificate verificiation
                


              


            


          


        


        		
          Exceptions and remote tracebacks
          
            		
              Pyro exceptions
            


            		
              Remote exceptions
            


            		
              Detailed traceback information
            


          


        


        		
          Tips & Tricks
          
            		
              Best practices
              
                		
                  Make as little as possible remotely accessible.
                


                		
                  Avoid circular communication topologies.
                


                		
                  Release proxies when no longer used. Avoids ‘After X simultaneous proxy connections, Pyro seems to freeze!’
                


                		
                  Avoid large binary blobs over the wire.
                


                		
                  Minimize object structures that travel over the wire.
                


                		
                  Consider using basic data types instead of custom classes.
                


              


            


            		
              Logging
            


            		
              Multiple network interfaces
            


            		
              Wire protocol version
            


            		
              Pyro behind a NAT router/firewall
            


            		
              ‘Failed to locate the nameserver’ or ‘Connection refused’ error, what now?
            


            		
              Binary data transfer / file transfer
            


            		
              IPV6 support
            


            		
              Pyro and Numpy
            


            		
              Pyro via HTTP and JSON
            


            		
              Client information on the current_context, correlation id
              
                		
                  Pyro5.current_context.client
                


                		
                  Pyro5.current_context.client_sock_addr
                


                		
                  Pyro5.current_context.seq
                


                		
                  Pyro5.current_context.msg_flags
                


                		
                  Pyro5.current_context.serializer_id
                


                		
                  Pyro5.current_context.annotations
                


                		
                  Pyro5.current_context.response_annotations
                


                		
                  Pyro5.current_context.correlation_id
                


              


            


            		
              Automatically freeing resources when client connection gets closed
              
                		
                  Pyro5.current_context.track_resource()
                


                		
                  Pyro5.current_context.untrack_resource()
                


              


            


            		
              Message annotations
            


            		
              Connection handshake
            


            		
              Efficient dispatchers or gateways that don’t de/reserialize messages
            


            		
              Hooking onto existing connected sockets such as from socketpair()
            


          


        


        		
          Configuring Pyro
          
            		
              Resetting the config to default values
              
                		
                  Pyro5.config.reset()
                


              


            


            		
              Inspecting current config
            


            		
              Overview of Config Items
            


          


        


        		
          Pyro5 library API
          
            		
              Pyro5.api — Main API package
              
                		
                  BatchProxy
                


                		
                  Daemon
                


                		
                  DaemonObject
                


                		
                  Proxy
                


                		
                  SerializedBlob
                


                		
                  SerializerBase
                


                		
                  URI
                


                		
                  behavior()
                


                		
                  callback()
                


                		
                  expose()
                


                		
                  locate_ns()
                


                		
                  oneway()
                


                		
                  register_class_to_dict()
                


                		
                  register_dict_to_class()
                


                		
                  resolve()
                


                		
                  serve()
                


                		
                  start_ns()
                


                		
                  start_ns_loop()
                


                		
                  type_meta()
                


                		
                  unregister_class_to_dict()
                


                		
                  unregister_dict_to_class()
                


              


            


            		
              Pyro5.config — Configuration items
            


            		
              Pyro5.client — Client code logic
              
                		
                  BatchProxy
                


                		
                  Proxy
                


                		
                  SerializedBlob
                


              


            


            		
              Pyro5.core — core Pyro logic
              
                		
                  URI
                


                		
                  locate_ns()
                


                		
                  resolve()
                


                		
                  type_meta()
                


              


            


            		
              Pyro5.server — Server (daemon) logic
              
                		
                  Daemon
                


                		
                  DaemonObject
                


                		
                  behavior()
                


                		
                  callback()
                


                		
                  expose()
                


                		
                  oneway()
                


                		
                  serve()
                


              


            


            		
              Pyro5.errors — Exception classes
              
                		
                  CommunicationError
                


                		
                  ConnectionClosedError
                


                		
                  DaemonError
                


                		
                  MessageTooLargeError
                


                		
                  NamingError
                


                		
                  ProtocolError
                


                		
                  PyroError
                


                		
                  SecurityError
                


                		
                  SerializeError
                


                		
                  TimeoutError
                


                		
                  excepthook()
                


                		
                  format_traceback()
                


                		
                  get_pyro_traceback()
                


              


            


            		
              Pyro5.nameserver — Pyro name server
              
                		
                  start_ns()
                


                		
                  start_ns_loop()
                


                		
                  NameServer
                


              


            


            		
              Pyro5.callcontext — Call context handling
              
                		
                  current_context
                


              


            


            		
              Pyro5.protocol — Pyro wire protocol
              
                		
                  ReceivingMessage
                


                		
                  SendingMessage
                


                		
                  log_wiredata()
                


                		
                  recv_stub()
                


              


            


            		
              Pyro5.socketutil — Socket related utilities
              
                		
                  SocketConnection
                


                		
                  bind_unused_port()
                


                		
                  create_bc_socket()
                


                		
                  create_socket()
                


                		
                  find_probably_unused_port()
                


                		
                  get_interface()
                


                		
                  get_ip_address()
                


                		
                  get_ssl_context()
                


                		
                  interrupt_socket()
                


                		
                  receive_data()
                


                		
                  send_data()
                


                		
                  set_keepalive()
                


                		
                  set_nodelay()
                


                		
                  set_noinherit()
                


                		
                  set_reuseaddr()
                


              


            


            		
              Pyro5.compatibility.Pyro4 — Pyro4 backward compatibility layer
              
                		
                  Daemon
                


                		
                  Proxy
                


                		
                  URI
                


                		
                  behavior()
                


                		
                  callback()
                


                		
                  expose()
                


                		
                  oneway()
                


              


            


            		
              Pyro5.utils.echoserver — Built-in echo server for testing purposes
              
                		
                  EchoServer
                


              


            


            		
              Pyro5.utils.httpgateway — HTTP to Pyro gateway
              
                		
                  pyro_app()
                


              


            


            		
              Socket server API contract
          